Do you want to publish a course? Click here

New techniques for a measurement of the electrons electric dipole moment

208   0   0.0 ( 0 )
 Added by Christopher Ho J
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electric dipole moment of the electron (eEDM) can be measured with high precision using heavy polar molecules. In this paper, we report on a series of new techniques that have improved the statistical sensitivity of the YbF eEDM experiment. We increase the number of molecules participating in the experiment by an order of magnitude using a carefully designed optical pumping scheme. We also increase the detection efficiency of these molecules by another order of magnitude using an optical cycling scheme. In addition, we show how to destabilise dark states and reduce backgrounds that otherwise limit the efficiency of these techniques. Together, these improvements allow us to demonstrate a statistical sensitivity of $1.8 times 10^{-28}$ e cm after one day of measurement, which is 1.2 times the shot-noise limit. The techniques presented here are applicable to other high-precision measurements using molecules.



rate research

Read More

We describe the first precision measurement of the electrons electric dipole moment (eEDM, $d_e$) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on $^{180}{rm Hf}^{19}{rm F}^{+}$ in its metastable $^{3}Delta_{1}$ electronic state, we obtain $d_e = (0.9 pm 7.7_{rm stat} pm 1.7_{rm syst}) times 10^{-29},e,{rm cm}$, resulting in an upper bound of $|d_e| < 1.3 times 10^{-28},e,{rm cm}$ (90% confidence). Our result provides independent confirmation of the current upper bound of $|d_e| < 9.3 times 10^{-29},e,{rm cm}$ [J. Baron $textit{et al.}$, Science $textbf{343}$, 269 (2014)], and offers the potential to improve on this limit in the near future.
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 $mu$K. This is a key step towards a measurement of the electrons electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically-assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral $^{129}$Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^3$He and $^{129}$Xe samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result, $left(-4.7pm6.4right)cdot 10^{-28}$ ecm, is consistent with zero and is used to place a new upper limit on the $^{129}$Xe EDM: $|d_text{Xe}|<1.5 cdot 10^{-27}$ ecm (95% C.L.). We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.
129 - P.-H. Chu , Y. J. Kim , I. Savukov 2018
We propose an experimental search for an axion-induced oscillating electric dipole moment (OEDM) for electrons using state-of-the-art alkali vapor-cell atomic magnetometers. The axion is a hypothesized new fundamental particle which can resolve the strong charge-parity problem and be a prominent dark matter candidate. This experiment utilizes an atomic magnetometer as both a source of optically polarized electron spins and a magnetic-field sensor. The interaction of the axion field, oscillating at a frequency equal to the axion mass, with an electron spin induces a sizable OEDM of the electron at the same frequency as the axion field. When the alkali vapor is subjected to an electric field and a magnetic field, the electron OEDM interacts with the electric field, resulting in an electron spin precession at the spins Larmor frequency in the magnetic field. The resulting precession signal can be sensitively detected with a probe laser beam of the atomic magnetometer. We estimate that the experiment is sensitive to the axion-photon interaction in ultralight axion masses from $10^{-15}$ to $10^{-10}$~eV. It is able to improve the current experimental limit up to 5 orders of magnitude, exploring new axion parameter spaces.
63 - N. Sachdeva , I. Fan , E. Babcock 2019
We describe a new technique to measure the EDM of $^{129}$Xe with $^3$He comagnetometry. Both species are polarized using spin-exchange optical pumping, transferred to a measurement cell, and transported into a magnetically shielded room, where SQUID magnetometers detect free precession in applied electric and magnetic fields. The result of a one week run combined with a detailed study of systematic effects is $d_A(^{129}mathrm{Xe}) = (0.26 pm 2.33_mathrm{stat} pm 0.72_mathrm{syst})times10^{-27}~e,mathrm{cm}$. This corresponds to an upper limit of $|d_A(^{129}mathrm{Xe})| < 4.81times 10^{-27} ~e,mathrm{cm}~(95%~mathrm{CL})$, a factor of 1.4 more sensitive than the previous limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا