No Arabic abstract
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained elusive in that domain due to the difficulties in engineering strong nonlinearities. Here, we show that a realistic three-wave mixing microwave architecture based on the SNAIL [Frattini et al., Appl. Phys. Lett. 110, 222603 (2017)] allows us to overcome this difficulty. As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure. This work highlights a practical advantage of microwave circuits with respect to optical systems for the purpose of engineering non-Gaussian states, and opens the quest for continuous-variable algorithms based on few repetitions of elementary gates from the continuous-variable universal set.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser which can be used to achieve universal CVQC. It then follows that the micromaser is a potential architecture for CVQC but our proof is easily adaptable to other potential physical systems.
Deterministic photon-photon gates enable the controlled generation of entanglement between mobile carriers of quantum information. Such gates have thus far been exclusively realized in the optical domain and by relying on post-selection. Here, we present a non-post-selected, deterministic, photon-photon gate in the microwave frequency range realized using superconducting circuits. We emit photonic qubits from a source chip and route those qubits to a gate chip with which we realize a universal gate set by combining controlled absorption and re-emission with single-qubit gates and qubit-photon controlled-phase gates. We measure quantum process fidelities of $75,%$ for single- and of $57,%$ for two-qubit gates, limited mainly by radiation loss and decoherence. This universal gate set has a wide range of potential applications in superconducting quantum networks.
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved off-line, thereby permitting universal continuous-variable quantum computation with linear optics.
Blind quantum computation (BQC) allows that a client who has limited quantum abilities can delegate quantum computation to a server who has advanced quantum technologies but learns nothing about the clients private information. For example, measurement-based model can guarantee privacy of clients inputs, quantum algorithms and outputs. However, it still remains a challenge to directly encrypt quantum algorithms in circuits model. To solve the problem, we propose GTUBQC, the first gate teleportation-based universal BQC protocol. Specifically, in this paper we consider a scenario where there are a trusted center responsible for preparing initial states, a client with the ability to perform X, Z, and two non-communicating servers conducting UBQC (universal BQC) and Bell measurements. GTUBQC ensures that all quantum outputs are at the clients side and the client only needs to detect whether servers honestly return correct measurement outcomes or not. In particular, GTUBQC can hide the universal quantum gates by encrypting the rotation angles, because arbitrary unitary operation can be decomposed into a combination of arbitrary rotation operators. Also, GTUBQC protocol can facilitate realizing UBQC in circuits, since GTUBQC uses one-time-pad to guarantee blindness. We prove the blindness and correctness of GTUBQC, and apply our approach to other types of computational tasks, such as quantum Fourier transform.