Do you want to publish a course? Click here

On a problem of ErdH{o}s about graphs whose size is the Tur{a}n number plus one

104   0   0.0 ( 0 )
 Added by Xingzhi Zhan
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider finite simple graphs. Given a graph $H$ and a positive integer $n,$ the Tur{a}n number of $H$ for the order $n,$ denoted ${rm ex}(n,H),$ is the maximum size of a graph of order $n$ not containing $H$ as a subgraph. ErdH{o}s posed the following problem in 1990: For which graphs $H$ is it true that every graph on $n$ vertices and ${rm ex}(n,H)+1$ edges contains at least two $H$s? Perhaps this is always true. We solve the second part of this problem in the negative by proving that for every integer $kge 4,$ there exists a graph $H$ of order $k$ and at least two orders $n$ such that there exists a graph of order $n$ and size ${rm ex}(n,H)+1$ which contains exactly one copy of $H.$ Denote by $C_4$ the $4$-cycle. We also prove that for every integer $n$ with $6le nle 11,$ there exists a graph of order $n$ and size ${rm ex}(n,C_4)+1$ which contains exactly one copy of $C_4,$ but for $n=12$ or $n=13,$ the minimum number of copies of $C_4$ in a graph of order $n$ and size ${rm ex}(n,C_4)+1$ is $2.$



rate research

Read More

152 - Jingru Yan , Xingzhi Zhan 2020
Given a graph $H$ and a positive integer $n,$ the Tur{a}n number of $H$ for the order $n,$ denoted ${rm ex}(n,H),$ is the maximum size of a simple graph of order $n$ not containing $H$ as a subgraph. The book with $p$ pages, denoted $B_p$, is the graph that consists of $p$ triangles sharing a common edge. Bollob{a}s and ErdH{o}s initiated the research on the Tur{a}n number of book graphs in 1975. The two numbers ${rm ex}(p+2,B_p)$ and ${rm ex}(p+3,B_p)$ have been determined by Qiao and Zhan. In this paper we determine the numbers ${rm ex}(p+4,B_p),$ ${rm ex}(p+5,B_p)$ and ${rm ex}(p+6,B_p),$ and characterize the corresponding extremal graphs for the numbers ${rm ex}(n,B_p)$ with $n=p+2,,p+3,,p+4,,p+5.$
102 - Xizhi Liu , Dhruv Mubayi 2020
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large $n$) sharp bounds on the minimum number of triangles in $G$ and also describe the extremal constructions. Similar results are proved for cliques of larger size and color critical graphs. This extends classical work of Rademacher, ErdH os, and Lovasz-Simonovits whose results apply only to $s le t$. Our results also address two conjectures of Xiao and Katona. We prove one of them and give a counterexample and prove a modified version of the other conjecture.
Given positive integers $p$ and $q$, a $(p,q)$-coloring of the complete graph $K_n$ is an edge-coloring in which every $p$-clique receives at least $q$ colors. ErdH{o}s and Shelah posed the question of determining $f(n,p,q)$, the minimum number of colors needed for a $(p,q)$-coloring of $K_n$. In this paper, we expand on the color energy technique introduced by Pohoata and Sheffer to prove new lower bounds on this function, making explicit the connection between bounds on extremal numbers and $f(n,p,q)$. Using results on the extremal numbers of subdivided complete graphs, theta graphs, and subdivided complete bipartite graphs, we generalize results of Fish, Pohoata, and Sheffer, giving the first nontrivial lower bounds on $f(n,p,q)$ for some pairs $(p,q)$ and improving previous lower bounds for other pairs.
110 - Yuping Gao , Songling Shan 2021
A graph is $P_8$-free if it contains no induced subgraph isomorphic to the path $P_8$ on eight vertices. In 1995, ErdH{o}s and Gy{a}rf{a}s conjectured that every graph of minimum degree at least three contains a cycle whose length is a power of two. In this paper, we confirm the conjecture for $P_8$-free graphs by showing that there exists a cycle of length four or eight in every $P_8$-free graph with minimum degree at least three.
Given a sequence $mathbf{k} := (k_1,ldots,k_s)$ of natural numbers and a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;mathbf{k})$ to denote the maximum of $F(G;mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by ErdH{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. In previous work with Yilma, we constructed a finite optimisation problem whose maximum is equal to the limit of $log_2 F(n;mathbf{k})/{nchoose 2}$ as $n$ tends to infinity and proved a stability theorem for complete multipartite graphs $G$. In this paper we provide a sufficient condition on $mathbf{k}$ which guarantees a general stability theorem for any graph $G$, describing the asymptotic structure of $G$ on $n$ vertices with $F(G;mathbf{k}) = F(n;mathbf{k}) cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem. We apply our theorem to systematically recover existing stability results as well as all cases with $s=2$. The proof uses a novel version of symmetrisation on edge-coloured weighted multigraphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا