Do you want to publish a course? Click here

Who Should Google Scholar Update More Often?

63   0   0.0 ( 0 )
 Added by Melih Bastopcu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider a resource-constrained updater, such as Google Scholar, which wishes to update the citation records of a group of researchers, who have different mean citation rates (and optionally, different importance coefficients), in such a way to keep the overall citation index as up to date as possible. The updater is resource-constrained and cannot update citations of all researchers all the time. In particular, it is subject to a total update rate constraint that it needs to distribute among individual researchers. We use a metric similar to the age of information: the long-term average difference between the actual citation numbers and the citation numbers according to the latest updates. We show that, in order to minimize this difference metric, the updater should allocate its total update capacity to researchers proportional to the $square$ $roots$ of their mean citation rates. That is, more prolific researchers should be updated more often, but there are diminishing returns due to the concavity of the square root function. More generally, our paper addresses the problem of optimal operation of a resource-constrained sampler that wishes to track multiple independent counting processes in a way that is as up to date as possible.



rate research

Read More

We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experienced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
135 - Zhiyuan Jiang , Zixu Cao , Siyu Fu 2020
Wireless communications for status update are becoming increasingly important, especially for machine-type control applications. Existing work has been mainly focused on Age of Information (AoI) optimizations. In this paper, a status-aware predictive wireless interface design, networking and implementation are presented which aim to minimize the status recovery error of a wireless networked system by leveraging online status model predictions. Two critical issues of predictive status update are addressed: practicality and usefulness. Link-level experiments on a Software-Defined-Radio (SDR) testbed are conducted and test results show that the proposed design can significantly reduce the number of wireless transmissions while maintaining a low status recovery error. A Status-aware Multi-Agent Reinforcement learning neTworking solution (SMART) is proposed to dynamically and autonomously control the transmit decisions of devices in an ad hoc network based on their individual statuses. System-level simulations of a multi dense platooning scenario are carried out on a road traffic simulator. Results show that the proposed schemes can greatly improve the platooning control performance in terms of the minimum safe distance between successive vehicles, in comparison with the AoI-optimized status-unaware and communication latency-optimized schemes---this demonstrates the usefulness of our proposed status update schemes in a real-world application.
In a wireless network that conveys status updates from sources (i.e., sensors) to destinations, one of the key issues studied by existing literature is how to design an optimal source sampling strategy on account of the communication constraints which are often modeled as queues. In this paper, an alternative perspective is presented -- a novel status-aware communication scheme, namely emph{parallel communications}, is proposed which allows sensors to be communication-agnostic. Specifically, the proposed scheme can determine, based on an online prediction functionality, whether a status packet is worth transmitting considering both the network condition and status prediction, such that sensors can generate status packets without communication constraints. We evaluate the proposed scheme on a Software-Defined-Radio (SDR) test platform, which is integrated with a collaborative autonomous driving simulator, i.e., Simulation-of-Urban-Mobility (SUMO), to produce realistic vehicle control models and road conditions. The results show that with online status predictions, the channel occupancy is significantly reduced, while guaranteeing low status recovery error. Then the framework is applied to two scenarios: a multi-density platooning scenario, and a flight formation control scenario. Simulation results show that the scheme achieves better performance on the network level, in terms of keeping the minimum safe distance in both vehicle platooning and flight control.
Consider any discrete memoryless channel (DMC) with arbitrarily but finite input and output alphabets X, Y respectively. Then, for any capacity achieving input distribution all symbols occur less frequently than 1-1/e$. That is, [ maxlimits_{x in mathcal{X}} P^*(x) < 1-frac{1}{e} ] oindent where $P^*(x)$ is a capacity achieving input distribution. Also, we provide sufficient conditions for which a discrete distribution can be a capacity achieving input distribution for some DMC channel. Lastly, we show that there is no similar restriction on the capacity achieving output distribution.
Timely status updating is crucial for future applications that involve remote monitoring and control, such as autonomous driving and Industrial Internet of Things (IIoT). Age of Information (AoI) has been proposed to measure the freshness of status updates. However, it is incapable of capturing critical systematic context information that indicates the time-varying importance of status information, and the dynamic evolution of status. In this paper, we propose a context-based metric, namely the Urgency of Information (UoI), to evaluate the timeliness of status updates. Compared to AoI, the new metric incorporates both time-varying context information and dynamic status evolution, which enables the analysis on context-based adaptive status update schemes, as well as more effective remote monitoring and control. The minimization of average UoI for a status update terminal with an updating frequency constraint is investigated, and an update-index-based adaptive scheme is proposed. Simulation results show that the proposed scheme achieves a near-optimal performance with a low computational complexity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا