Do you want to publish a course? Click here

Recent advances in the monodromy theory of integrable Hamiltonian systems

111   0   0.0 ( 0 )
 Added by Nikolay Martynchuk
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.



rate research

Read More

We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takenss index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko-Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noethers theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations.
195 - G. Sardanashvily 2015
Applied to field theory, the familiar symplectic technique leads to instantaneous Hamiltonian formalism on an infinite-dimensional phase space. A true Hamiltonian partner of first order Lagrangian theory on fibre bundles $Yto X$ is covariant Hamiltonian formalism in different variants, where momenta correspond to derivatives of fields relative to all coordinates on $X$. We follow polysymplectic (PS) Hamiltonian formalism on a Legendre bundle over $Y$ provided with a polysymplectic $TX$-valued form. If $X=mathbb R$, this is a case of time-dependent non-relativistic mechanics. PS Hamiltonian formalism is equivalent to the Lagrangian one if Lagrangians are hyperregular. A non-regular Lagrangian however leads to constraints and requires a set of associated Hamiltonians. We state comprehensive relations between Lagrangian and PS Hamiltonian theories in a case of semiregular and almost regular Lagrangians. Quadratic Lagrangian and PS Hamiltonian systems, e.g. Yang - Mills gauge theory are studied in detail. Quantum PS Hamiltonian field theory can be developed in the frameworks both of familiar functional integral quantization and quantization of the PS bracket.
We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the concept of convergence in distribution. The convergence is established in determination of the sequence of compositions of independent random transformations. When sequences of compositions of independent random transformations of the shift by the Euclidean vector in space, the results obtained coincide with the central limit theorem for the sums independent random vectors. The results are applied to the dynamics of quantum systems arising random quantization of the classical Hamiltonian system.
119 - Victor Kac 2015
These lectures were given in Session 1: Vertex algebras, W-algebras, and applications of INdAM Intensive research period Perspectives in Lie Theory at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy, December 9, 2014 -- February 28, 2015.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا