Do you want to publish a course? Click here

Perturbation solutions of relativistic viscous hydrodynamics for longitudinally expanding fireballs

156   0   0.0 ( 0 )
 Added by Ze-Fang Jiang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler coordinates with the longitudinal expansion effect is small. Under the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous effect and longitudinal acceleration effect in the longitudinal expanding framework are presented and specifically temperature profile shows symmetry Gaussian shape in the Rindler coordinates. In addition, in the presence of the longitudinal acceleration expanding effect, the results of the Israel-Stewart approximation are compared to the results from Bjorken and Navier-Stokes approximation, and it gives a good description than the Navier-Stokes theories results at the early stages of evolution.



rate research

Read More

Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analytic solutions also exist. However, the inclusion of viscous effects in exact, analytic solutions has received less attention. Here we utilize Hubble flow to investigate the role of bulk viscosity, and present different classes of exact, analytic solutions valid also in the presence of dissipative effects.
New, analytic solutions of relativistic viscous hydrodynamics are presented, describing expanding fireballs with Hubble-like velocity profile and ellipsoidal symmetry, similar to fireballs created in heavy ion collisions. We find that with these specifications, one obtains solutions where the shear viscosity essentially does not influence the time evolution of the system, thus these solutions are particularly adept tools to study the effect of bulk viscosity alone, which always results in a slower decrease of energy density as well as temperature compared to the case of perfect fluid. We investigate different scenarios for the bulk viscosity and find qualitatively different effects on the time evolution which suggests that there is a possibility to infer the value of bulk viscosity from energy density and temperature measurements in high-energy heavy-ion collisions.
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation. Recently there has been significant interest in understanding the implications of angular momentum conservation for a corresponding hydrodynamic theory. In this work, we examine the key conceptual issues for such a theory in the relativistic regime where the orbital and spin components get entangled. We derive the equations for relativistic viscous hydrodynamics with angular momentum through Navier-Stokes type of gradient expansion analysis.
We present a variational approach for relativistic ideal hydrodynamics interacting with electromagnetic fields. The momentum of fluid is introduced as the canonical conjugate variable of the position of a fluid element, which coincides with the conserved quantity derived from the Noether theorem. We further show that our formulation can reproduce the usual electromagnetic hydrodynamics which is obtained so as to satisfy the conservation of the inertia of fluid motion.
Back-to-Back Correlations of particle-antiparticle pairs are related to the in-medium mass-modification and squeezing of the quanta involved. They are predicted to appear when hot and dense hadronic matter is formed in high energy nucleus-nucleus collisions. The survival and magnitude of the Back-to-Back Correlations of boson-antiboson pairs generated by in-medium mass modifications are studied here in the case of a thermalized, finite-sized, spherically symmetric expanding medium. We show that the BBC signal indeed survives the finite-time emission, as well as the expansion and flow effects, with sufficient intensity to be observed at RHIC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا