Every finite abelian group is a subgroup of the additive group of a finite simple left brace


Abstract in English

Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $(B,+,cdot )$ is a structure determined by two group structures on a set $B$: an abelian group $(B,+)$ and a group $(B,cdot)$, satisfying certain compatibility conditions. The main result of this paper shows that every finite abelian group $A$ is a subgroup of the additive group of a finite simple left brace $B$ with metabelian multiplicative group with abelian Sylow subgroups. This result complements earlier unexpected results of the authors on an abundance of finite simple left braces.

Download