No Arabic abstract
Cycle is the simplest structure that brings redundant paths in network connectivity and feedback effects in network dynamics. Focusing on cycle structure, this paper defines a new matrix, named cycle number matrix, to represent cycle information of a network, and an index, named cycle ratio, to quantify the node importance. Experiments on real networks suggest that cycle ratio contains rich information in addition to well-known benchmark indices, for example, the node rankings by cycle ratio are largely different from rankings by degree, H-index, coreness, betweenness and articulation ranking, while the rankings by degree, H-index, coreness are very similar to each other. Extensive experiments on identifying vital nodes that maintain network connectivity, facilitate network synchronization and maximize the early reach of spreading show that cycle ratio is competitive to betweenness and overall better than other benchmarks. We believe the in-depth analyses on cycle structure may yield novel insights, metrics, models and algorithms for network science.
We define a minimal model of traffic flows in complex networks containing the most relevant features of real routing schemes, i.e. a trade--off strategy between topological-based and traffic-based routing. The resulting collective behavior, obtained analytically for the ensemble of uncorrelated networks, is physically very rich and reproduces results recently observed in traffic simulations on scale-free networks. We find that traffic control is useless in homogeneous graphs but may improves global performance in inhomogeneous networks, enlarging the free-flow region in parameter space. Traffic control also introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the networks degree distribution. We rigorously prove that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks.
Precisely quantifying the heterogeneity or disorder of a network system is very important and desired in studies of behavior and function of the network system. Although many degree-based entropies have been proposed to measure the heterogeneity of real networks, heterogeneity implicated in the structure of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition to precisely quantify the structural heterogeneity of networks. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropy. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are indeed more heterogenous in the view of automorphism partition than what have been depicted under the measurement of degree based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.
Community structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we overview the Stochastic Block Model, its different variants, and inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear and/or new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.
The generalized $H(n)$ Hirsch index of order $n$ has been recently introduced and shown to interpolate between the degree and the $K$-core centrality in networks. We provide a detailed analytical characterization of the properties of sets of nodes having the same $H(n)$, within the annealed network approximation. The connection between the Hirsch indices and the degree is highlighted. Numerical tests in synthetic uncorrelated networks and real-world correlated ones validate the findings. We also test the use of the Hirsch index for the identification of influential spreaders in networks, finding that it is in general outperformed by the recently introduced Non-Backtracking centrality.