We define a class of tensor network states for spin systems where the individual tensors are functionals of fields. The construction is based on the path integral representation of correlators of operators in quantum field theory. These tensor network states are infinite dimension
Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such non-local fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this work, we propose a way to overcome this challenge. We suggest a method intertwining the optimisation over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalises basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimisation in tensor network methods.
Weakly coupled Ising chains provide a condensed-matter realization of confinement. In these systems, kinks and antikinks bind into mesons due to an attractive interaction potential that increases linearly with the distance between the particles. While single mesons have been directly observed in experiments, the role of the multiparticle continuum and bound states of mesons in the excitation spectrum is far less clear. Using time-dependent density matrix renormalization group methods, we study the dynamical structure factors of one- and two-spin operators in a transverse-field two-leg Ising ladder in the ferromagnetic phase. The propagation of time-dependent correlations and the two-spin excitation spectrum reveal the existence of interchain bound states, which are absent in the one-spin dynamical structure factor. We also identify two-meson bound states that appear at higher energies, above the thresholds of several two-meson continua.
Ground states of the frustrated spin-1 Ising-Heisenberg two-leg ladder with Heisenberg intra-rung coupling and only Ising interaction along legs and diagonals are rigorously found by taking advantage of local conservation of the total spin on each rung. The constructed ground-state phase diagram of the frustrated spin-1 Ising-Heisenberg ladder is then compared with the analogous phase diagram of the fully quantum spin-1 Heisenberg two-leg ladder obtained by density matrix renormalization group (DMRG) calculations. It is demonstrated that both investigated spin models exhibit quite similar magnetization scenarios, which involve intermediate plateaux at one-quarter, one-half and three-quarters of the saturation magnetization.
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.
Suppose we would like to approximate all local properties of a quantum many-body state to accuracy $delta$. In one dimension, we prove that an area law for the Renyi entanglement entropy $R_alpha$ with index $alpha<1$ implies a matrix product state representation with bond dimension $mathrm{poly}(1/delta)$. For (at most constant-fold degenerate) ground states of one-dimensional gapped Hamiltonians, it suffices that the bond dimension is almost linear in $1/delta$. In two dimensions, an area law for $R_alpha(alpha<1)$ implies a projected entangled pair state representation with bond dimension $e^{O(1/delta)}$. In the presence of logarithmic corrections to the area law, similar results are obtained in both one and two dimensions.