Do you want to publish a course? Click here

Large and Moderate Deviation Principles for the SIR Epidemic in a Random Environment

111   0   0.0 ( 0 )
 Added by Xiaofeng Xue
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we are concerned with SIR epidemics in a random environment on complete graphs, where every edges are assigned with i.i.d. weights. Our main results give large and moderate deviation principles of sample paths of this model.



rate research

Read More

134 - Lulu Fang , Lei Shang 2016
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We describe precise asymptotics of upper large deviations, i.e. $mathbb{P}[Z_n > e^{rho n}]$. Moreover in the subcritical case, under the Cramer condition on the mean of the reproduction law, we investigate large deviations-type estimates for the first passage time of the branching process in question and its total population size.
151 - Jan Grebik , Oleg Pikhurko 2021
Borgs, Chayes, Gaudio, Petti and Sen [arXiv:2007.14508] proved a large deviation principle for block model random graphs with rational block ratios. We strengthen their result by allowing any block ratios (and also establish a simpler formula for the rate function). We apply the new result to derive a large deviation principle for graph sampling from any given step graphon.
We derive properties of the rate function in Varadhans (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LDP to that of regeneration times and distances. The analysis of the latter is possible due to the i.i.d. structure of regenerations.
Let $(a_k)_{kinmathbb N}$ be a sequence of integers satisfying the Hadamard gap condition $a_{k+1}/a_k>q>1$ for all $kinmathbb N$, and let $$ S_n(omega) = sum_{k=1}^ncos(2pi a_k omega),qquad ninmathbb N,;omegain [0,1]. $$ The lacunary trigonometric sum $S_n$ is known to exhibit several properties typical for sums of independent random variables. In this paper we initiate the investigation of large deviation principles (LDPs) for $S_n$. Under the large gap condition $a_{k+1}/a_ktoinfty$, we prove that $(S_n/n)_{ninmathbb N}$ satisfies an LDP with speed $n$ and the same rate function $tilde{I}$ as for sums of independent random variables with the arcsine distribution, but show that the LDP may fail to hold when we only assume the Hadamard gap condition. However, we prove that in the special case $a_k=q^k$ for some $qin {2,3,ldots}$, $(S_n/n)_{ninmathbb N}$ satisfies an LDP with speed $n$ and a rate function $I_q$ different from $tilde{I}$. We also show that $I_q$ converges pointwise to $tilde I$ as $qtoinfty$ and construct a random perturbation $(a_k)_{kinmathbb N}$ of the sequence $(2^k)_{kinmathbb N}$ for which $a_{k+1}/a_kto 2$ as $ktoinfty$, but for which $(S_n/n)_{ninmathbb N}$ satisfies an LDP with the rate function $tilde{I}$ as in the independent case and not, as one might na{i}vely expect, with rate function $I_2$. We relate this fact to the number of solutions of certain Diophantine equations. Our results show that LDPs for lacunary trigonometric sums are sensitive to the arithmetic properties of $(a_k)_{kinmathbb N}$. This is particularly noteworthy since no such arithmetic effects are visible in the central limit theorem by Salem and Zygmund or in the law of the iterated logarithm by Erdos and Gal. Our proofs use a combination of tools from probability theory, harmonic analysis, and dynamical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا