Do you want to publish a course? Click here

Precision predictions for $B rightarrow rho tau u_tau$ and $B rightarrow omega tau u_tau$ in the SM and beyond

60   0   0.0 ( 0 )
 Added by Markus Tobias Prim
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present new precision predictions for semitauonic decays involving $rho$ and $omega$ final state mesons. These decay channels offer an interesting orthogonal probe to study the existing B anomalies in semitauonic transitions and are accessible with the Belle II experiment. The predictions are based on combining existing light-cone sum-rule calculations for the form factors with measured experimental spectra from the BaBar and Belle collaborations. This allows us to reliably extrapolate the light-lepton form factor predictions to large values of the four-momentum transfer squared, $q^2$, and in turn to derive precise predictions for $R_{rho}$ and $R_{omega}$, the ratio of the total decay rates of $B rightarrow rho tau u_tau$ and $B rightarrow omega tau u_tau$ for $tau$ final states with respect to light leptons in the SM. In addition, we investigate the impact of all four-fermi operators on the semitauonic $q^2$ spectra and these ratios.



rate research

Read More

In a combined study of the decay spectra of $tau^-to K_Spi^- u_tau$ and $tau^-to K^-eta u_tau$ decays within a dispersive representation of the required form factors, we illustrate how the $K^*(1410)$ resonance parameters, defined through the pole position in the complex plane, can be extracted with improved precision as compared to previous studies. While we obtain a substantial improvement in the mass, the uncertainty in the width is only slightly reduced, with the findings $M_{K^{*prime}}=1304 pm 17,$MeV and $Gamma_{K^{*prime}} = 171 pm 62,$MeV. Further constraints on the width could result from updated analyses of the $Kpi$ and/or $Keta$ spectra using the full Belle-I data sample. Prospects for Belle-II are also discussed. As the $K^-pi^0$ vector form factor enters the description of the decay $tau^-to K^-eta u_tau$, we are in a position to investigate isospin violations in its parameters like the form factor slopes. In this respect also making available the spectrum of the transition $tau^-to K^-pi^0 u_tau$ would be extremely useful, as it would allow to study those isospin violations with much higher precision.
We search for the process $B^0 to pi^- tau^+ u_tau$ using the full Belle data set of $711,{rm fb}^{-1}$, corresponding to $772 times 10^6 Bbar{B}$ pairs, collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We reconstruct one $B$ meson in a hadronic decay and search for the $B^0 to pi^- tau^+ u_tau$ process in the remainder of the event. No significant signal is observed and an upper limit of $mathcal{B}(B^0 to pi^- tau^+ u_tau) < 2.5 times 10^{-4}$ is obtained at the $90%$ confidence level.
We report the first measurement of the $tau$ lepton polarization in the decay ${bar B} rightarrow D^* tau^- {bar u_{tau}}$ as well as a new measurement of the ratio of the branching fractions $R(D^{*}) = mathcal{B}({bar B} rightarrow D^* tau^- {bar u_{tau}}) / mathcal{B}({bar B} rightarrow D^* ell^- {bar u_{ell}})$, where $ell^-$ denotes an electron or a muon, with the decays $tau^- rightarrow pi^- u_{tau}$ and $tau^- rightarrow rho^- u_{tau}$. We use the full data sample of $772 times 10^6$ $B{bar B}$ pairs accumulated with the Belle detector at the KEKB electron-positron collider. Our preliminary results, $R(D^*) = 0.276 pm 0.034{rm (stat.)} ^{+0.029} _{-0.026}{rm (syst.)}$ and $P_{tau} = -0.44 pm 0.47 {rm (stat.)} ^{+0.20} _{-0.17} {rm (syst.)}$, are consistent with the theoretical predictions of the Standard Model within $0.6$ standard deviation.
We present the first measurements of branching fractions of rare tau-lepton decays, $tau^- rightarrow pi^- u_{tau} ell^+ ell^-$ ($ell = e$ or $mu$), using a data sample corresponding to 562 fb$^{-1}$ collected at a center-of-mass energy of 10.58 GeV with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The $tau^- rightarrow pi^- u_tau e^+ e^-$ decay is observed for the first time with 7.0$sigma$ significance. The partial branching fraction determined by the structure-dependent mechanisms mediated by either a vector or an axial-vector current for the mass region $M_{pi e e}>1.05$ GeV/$c^2$ is measured to be $mathcal{B}(tau^-rightarrow pi^- u_tau e^+ e^-)[M_{pi^- e^+ e^-}>1.05~{rm GeV}/c^2] = (5.90 pm 0.53 pm 0.85 pm 0.11) times 10^{-6}$, where the first uncertainty is statistical, the second is systematic, and the third is due to the model dependence. In the full phase space, due to the different detection efficiencies for the structure-dependent mechanisms mediated by axial-vector and vector currents, the branching fraction varies from $mathcal{B}_{A}(tau^-rightarrow pi^- u_tau e^+ e^-) = (1.46 pm 0.13 pm 0.21) times 10^{-5}$ to $mathcal{B}_{V}(tau^-rightarrow pi^- u_tau e^+ e^-) = (3.01 pm 0.27 pm 0.43) times 10^{-5}$, respectively. An upper limit is set on the branching fraction of the $tau^- rightarrow pi^- u_tau mu^+ mu^-$ decay, $mathcal{B}(tau^-rightarrow pi^- u_tau mu^+ mu^-) < 1.14 times 10^{-5}$, at the 90% confidence level.
75 - Taifan Zheng , Ji Xu , Lu Cao 2020
The precise determination of the $B_c to tau u_tau$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$ and probing new physics models. In this paper, we discuss the potential of measuring the processes of $B_c to tau u_tau$ with $tau$ decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the $Z$ pole operation, the channel signal can achieve five $sigma$ significance with $sim 10^9$ $Z$ decays, and the signal strength accuracies for $B_c to tau u_tau$ can reach around 1% level at the nominal CEPC $Z$ pole statistics of one trillion $Z$ decays assuming the total $B_c to tau u_tau$ yield is $3.6 times 10^6$. Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the $b to ctau u$ transition. If the total $B_c$ yield can be determined to $mathcal{O}(1%)$ level of accuracy in the future, these results also imply $|V_{cb}|$ could be measured up to $mathcal{O}(1%)$ level of accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا