Atomistic origins of continuum dislocation dynamics


Abstract in English

This paper focuses on the connections between four stochastic and deterministic models for the motion of straight screw dislocations. Starting from a description of screw dislocation motion as interacting random walks on a lattice, we prove explicit estimates of the distance between solutions of this model, an SDE system for the dislocation positions, and two deterministic mean-field models describing the dislocation density. The proof of these estimates uses a collection of various techniques in analysis and probability theory, including a novel approach to establish propagation-of-chaos on a spatially discrete model. The estimates are non-asymptotic and explicit in terms of four parameters: the lattice spacing, the number of dislocations, the dislocation core size, and the temperature. This work is a first step in exploring this parameter space with the ultimate aim to connect and quantify the relationships between the many different dislocation models present in the literature.

Download