Do you want to publish a course? Click here

A simple way to make neural networks robust against diverse image corruptions

95   0   0.0 ( 0 )
 Added by Evgenia Rusak
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The human visual system is remarkably robust against a wide range of naturally occurring variations and corruptions like rain or snow. In contrast, the performance of modern image recognition models strongly degrades when evaluated on previously unseen corruptions. Here, we demonstrate that a simple but properly tuned training with additive Gaussian and Speckle noise generalizes surprisingly well to unseen corruptions, easily reaching the previous state of the art on the corruption benchmark ImageNet-C (with ResNet50) and on MNIST-C. We build on top of these strong baseline results and show that an adversarial training of the recognition model against uncorrelated worst-case noise distributions leads to an additional increase in performance. This regularization can be combined with previously proposed defense methods for further improvement.



rate research

Read More

Modern neural networks excel at image classification, yet they remain vulnerable to common image corruptions such as blur, speckle noise or fog. Recent methods that focus on this problem, such as AugMix and DeepAugment, introduce defenses that operate in expectation over a distribution of image corruptions. In contrast, the literature on $ell_p$-norm bounded perturbations focuses on defenses against worst-case corruptions. In this work, we reconcile both approaches by proposing AdversarialAugment, a technique which optimizes the parameters of image-to-image models to generate adversarially corrupted augmented images. We theoretically motivate our method and give sufficient conditions for the consistency of its idealized version as well as that of DeepAugment. Our classifiers improve upon the state-of-the-art on common image corruption benchmarks conducted in expectation on CIFAR-10-C and improve worst-case performance against $ell_p$-norm bounded perturbations on both CIFAR-10 and ImageNet.
Neural networks are usually over-parameterized with significant redundancy in the number of required neurons which results in unnecessary computation and memory usage at inference time. One common approach to address this issue is to prune these big networks by removing extra neurons and parameters while maintaining the accuracy. In this paper, we propose NoiseOut, a fully automated pruning algorithm based on the correlation between activations of neurons in the hidden layers. We prove that adding additional output neurons with entirely random targets results into a higher correlation between neurons which makes pruning by NoiseOut even more efficient. Finally, we test our method on various networks and datasets. These experiments exhibit high pruning rates while maintaining the accuracy of the original network.
Convolutional neural networks (CNN) have recently achieved state-of-the-art results in various applications. In the case of image recognition, an ideal model has to learn independently of the training data, both local dependencies between the three components (R,G,B) of a pixel, and the global relations describing edges or shapes, making it efficient with small or heterogeneous datasets. Quaternion-valued convolutional neural networks (QCNN) solved this problematic by introducing multidimensional algebra to CNN. This paper proposes to explore the fundamental reason of the success of QCNN over CNN, by investigating the impact of the Hamilton product on a color image reconstruction task performed from a gray-scale only training. By learning independently both internal and external relations and with less parameters than real valued convolutional encoder-decoder (CAE), quaternion convolutional encoder-decoders (QCAE) perfectly reconstructed unseen color images while CAE produced worst and gray-sca
Statistical hypothesis testing serves as statistical evidence for scientific innovation. However, if the reported results are intentionally biased, hypothesis testing no longer controls the rate of false discovery. In particular, we study such selection bias in machine learning models where the reporter is motivated to promote an algorithmic innovation. When the number of possible configurations (e.g., datasets) is large, we show that the reporter can falsely report an innovation even if there is no improvement at all. We propose a `post-reporting solution to this issue where the bias of the reported results is verified by another set of results. The theoretical findings are supported by experimental results with synthetic and real-world datasets.
We introduce a simple and versatile framework for image-to-image translation. We unearth the importance of normalization layers, and provide a carefully designed two-stream generative model with newly proposed feature transformations in a coarse-to-fine fashion. This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network, permitting our method to scale to various tasks in both unsupervised and supervised settings. No additional constraints (e.g., cycle consistency) are needed, contributing to a very clean and simple method. Multi-modal image synthesis with arbitrary style control is made possible. A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا