No Arabic abstract
The purpose of gesture recognition is to recognize meaningful movements of human bodies, and gesture recognition is an important issue in computer vision. In this paper, we present a multimodal gesture recognition method based on 3D densely convolutional networks (3D-DenseNets) and improved temporal convolutional networks (TCNs). The key idea of our approach is to find a compact and effective representation of spatial and temporal features, which orderly and separately divide task of gesture video analysis into two parts: spatial analysis and temporal analysis. In spatial analysis, we adopt 3D-DenseNets to learn short-term spatio-temporal features effectively. Subsequently, in temporal analysis, we use TCNs to extract temporal features and employ improved Squeeze-and-Excitation Networks (SENets) to strengthen the representational power of temporal features from each TCNs layers. The method has been evaluated on the VIVA and the NVIDIA Gesture Dynamic Hand Gesture Datasets. Our approach obtains very competitive performance on VIVA benchmarks with the classification accuracies of 91.54%, and achieve state-of-the art performance with 86.37% accuracy on NVIDIA benchmark.
Any spatio-temporal movement or reorientation of the hand, done with the intention of conveying a specific meaning, can be considered as a hand gesture. Inputs to hand gesture recognition systems can be in several forms, such as depth images, monocular RGB, or skeleton joint points. We observe that raw depth images possess low contrasts in the hand regions of interest (ROI). They do not highlight important details to learn, such as finger bending information (whether a finger is overlapping the palm, or another finger). Recently, in deep-learning--based dynamic hand gesture recognition, researchers are tying to fuse different input modalities (e.g. RGB or depth images and hand skeleton joint points) to improve the recognition accuracy. In this paper, we focus on dynamic hand gesture (DHG) recognition using depth quantized image features and hand skeleton joint points. In particular, we explore the effect of using depth-quantized features in Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) based multi-modal fusion networks. We find that our method improves existing results on the SHREC-DHG-14 dataset. Furthermore, using our method, we show that it is possible to reduce the resolution of the input images by more than four times and still obtain comparable or better accuracy to that of the resolutions used in previous methods.
Gesture recognition and hand motion tracking are important tasks in advanced gesture based interaction systems. In this paper, we propose to apply a sliding windows filtering approach to sample the incoming streams of data from data gloves and a decision tree model to recognize the gestures in real time for a manual grafting operation of a vegetable seedling propagation facility. The sequence of these recognized gestures defines the tasks that are taking place, which helps to evaluate individuals performances and to identify any bottlenecks in real time. In this work, two pairs of data gloves are utilized, which reports the location of the fingers, hands, and wrists wirelessly (i.e., via Bluetooth). To evaluate the performance of the proposed framework, a preliminary experiment was conducted in multiple lab settings of tomato grafting operations, where multiple subjects wear the data gloves while performing different tasks. Our results show an accuracy of 91% on average, in terms of gesture recognition in real time by employing our proposed framework.
Defining methods for the automatic understanding of gestures is of paramount importance in many application contexts and in Virtual Reality applications for creating more natural and easy-to-use human-computer interaction methods. In this paper, we present a method for the recognition of a set of non-static gestures acquired through the Leap Motion sensor. The acquired gesture information is converted in color images, where the variation of hand joint positions during the gesture are projected on a plane and temporal information is represented with color intensity of the projected points. The classification of the gestures is performed using a deep Convolutional Neural Network (CNN). A modified version of the popular ResNet-50 architecture is adopted, obtained by removing the last fully connected layer and adding a new layer with as many neurons as the considered gesture classes. The method has been successfully applied to the existing reference dataset and preliminary tests have already been performed for the real-time recognition of dynamic gestures performed by users.
Gesture recognition has attracted considerable attention owing to its great potential in applications. Although the great progress has been made recently in multi-modal learning methods, existing methods still lack effective integration to fully explore synergies among spatio-temporal modalities effectively for gesture recognition. The problems are partially due to the fact that the existing manually designed network architectures have low efficiency in the joint learning of multi-modalities. In this paper, we propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition. The proposed method includes two key components: 1) enhanced temporal representation via the proposed 3D Central Difference Convolution (3D-CDC) family, which is able to capture rich temporal context via aggregating temporal difference information; and 2) optimized backbones for multi-sampling-rate branches and lateral connections among varied modalities. The resultant multi-modal multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics. Comprehensive experiments are performed on three benchmark datasets (IsoGD, NvGesture, and EgoGesture), demonstrating the state-of-the-art performance in both single- and multi-modality settings.The code is available at https://github.com/ZitongYu/3DCDC-NAS
Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies, such as transformations including scaling, shifting and interpolating, require hyperparameter optimization that can easily cost hundreds of GPU hours. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN) that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. The proposed data augmentation strategy is fast to train and the synthetic data leads to higher recognition accuracy than using data augmented with a classical approach.