Do you want to publish a course? Click here

Cosmological constraints on dark energy in light of gravitational wave bounds

135   0   0.0 ( 0 )
 Added by Johannes Noller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational wave (GW) constraints have recently been used to significantly restrict models of dark energy and modified gravity. New bounds arising from GW decay and GW-induced dark energy instabilities are particularly powerful in this context, complementing bounds from the observed speed of GWs. We discuss the associated linear cosmology for Horndeski gravity models surviving these combined bounds and compute the corresponding cosmological parameter constraints, using CMB, redshift space distortion, matter power spectrum and BAO measurements from the Planck, SDSS/BOSS and 6dF surveys. The surviving theories are strongly constrained, tightening previous bounds on cosmological deviations from $Lambda{}$CDM by over an order of magnitude. We also comment on general cosmological stability constraints and the nature of screening for the surviving theories, pointing out that a raised strong coupling scale can ensure compatibility with gravitational wave constraints, while maintaining a functional Vainshtein screening mechanism on solar system scales. Finally, we discuss the quasi-static limit as well as (constraints on) related observables for near-future surveys.



rate research

Read More

We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressureless) cold dark matter (CDM) and dark energy (DE). The subclass of models for which the ratio $r$ depends only on the scale factor is shown to be equivalent to unified models of the dark sector, i.e. models for which the CDM and DE components can be combined in order to form a unified dark fluid. For specific choices of the function $fleft(rright)$ we recover several models already studied in the literature. We analyse various special cases of this type of interacting models using a suitably modified version of the CLASS code combined with MontePython in order to constrain the parameter space with the data from supernova of type SNe Ia (JLA), the Hubble constant $H_{0}$, cosmic chronometers (CC), baryon acoustic oscilations (BAO) and data from the Planck satellite (Planck TT). Our analysis shows that even if data from the late Universe ($H_{0}$, SNe Ia and CC) indicate an interaction in the dark sector, the data related to the early Universe (BAO and Planck TT) constrain this interaction substantially, in particular for cases in which the background dynamics is strongly affected.
We study the decay of gravitational waves into dark energy fluctuations $pi$, through the processes $gamma to pipi$ and $gamma to gamma pi$, made possible by the spontaneous breaking of Lorentz invariance. Within the EFT of Dark Energy (or Horndeski/beyond Horndeski theories) the first process is large for the operator $frac12 tilde m_4^2(t) , delta g^{00}, left( {}^{(3)}! R + delta K_mu^ u delta K^mu_ u -delta K^2 right)$, so that the recent observations force $tilde m_4 =0$ (or equivalently $alpha_{rm H}=0$). This constraint, together with the requirement that gravitational waves travel at the speed of light, rules out all quartic and quintic GLPV theories. Additionally, we study how the same couplings affect the propagation of gravitons at loop order. The operator proportional to $tilde m_4^2$ generates a calculable, non-Lorentz invariant higher-derivative correction to the graviton propagation. The modification of the dispersion relation provides a bound on $tilde m_4^2$ comparable to the one of the decay. Conversely, operators up to cubic Horndeski do not generate sizeable higher-derivative corrections.
Positivity bounds - constraints on any low-energy effective field theory imposed by the fundamental axioms of unitarity, causality and locality in the UV - have recently been used to constrain scalar-tensor theories of dark energy. However, the coupling to matter fields has so far played a limited role. We show that demanding positivity when including interactions with standard matter fields leads to further constraints on the dark energy parameter space. We demonstrate how implementing these bounds as theoretical priors affects cosmological parameter constraints and explicitly illustrate the impact on a specific Effective Field Theory for dark energy. We also show in this model that the existence of a standard UV completion requires that gravitational waves must travel superluminally on cosmological backgrounds.
A novel fractal structure for the cosmological horizon, inspired by COVID-19 geometry, which results in a modified area entropy, is applied to cosmology in order to serve dark energy. The constraints based on a complete set of observational data are derived. There is a strong Bayesian evidence in favor of such a dark energy in comparison to a standard $Lambda$CDM model and that this energy cannot be reduced to a cosmological constant. Besides, there is a shift towards smaller values of baryon density parameter and towards larger values of the Hubble parameter, which reduces the Hubble tension.
We present cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background obtained from the Planck 2015 results together with the baryon acoustic oscillations (BAO) data. We find that the inclusion of the BAO data improves the constraints on the time variation of the effective gravitational constant by more than $10%$, that is, the time variation of the effective gravitational constant between the recombination and the present epochs is constrained as $G_{rm rec}/G_0-1 <1.9times 10^{-3} (95.45% {rm C.L.})$ and $G_{rm rec}/G_0-1 <5.5times 10^{-3} (99.99 % {rm C.L.})$. We also discuss the dependence of the constraints on the choice of the prior.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا