Do you want to publish a course? Click here

Quantum Monte Carlo simulation of intervortex potential in superconductors

168   0   0.0 ( 0 )
 Added by Arata Yamamoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the interaction potential of superconducting vortices at the full quantum level. We formulate the interaction potential in a constrained path integral and calculate it by the quantum Monte Carlo simulation. The vortex-vortex potential is attractive (type-I), repulsive (type-II), and flat (critical) depending on a coupling constant. The vortex-antivortex potential also depends on the coupling constant at long range but is always attractive at short range.



rate research

Read More

The standard Ginzburg-Landau model of competing-order superconductors is studied. It is observed that this model possesses two distinct species of vortex, and consequently has two distinct integer valued topological charges. A simple point particle model of long range forces between (anti)vortices of any species is developed and compared with numerical simulations of the full field theory, excellent agreement being found. Some of the results are quite counterintuitive. For example, a parameter regime exists where vortices of one species repel both vortices and antivortices of the other.
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semi-positive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperature.
It has long been a challenge to describe the origin of unconventional superconductivity. The two known examples with high Tc, based on iron and copper, have very different electronic structures, while other materials with similar electronic structure may not show superconductivity at all. In this paper, the authors show that by using high accuracy diffusion Monte Carlo calculations, the unconventional superconductors of both high Tc types form a cluster at intermediate spin-charge coupling. The spin-charge coupling may serve as a normal state marker for unconventional superconductivity, and provides evidence that unconventional superconductivity is due to interaction of charge with local spins in materials.
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L=1024.
We demonstrate existence of non-pairwise interaction forces between vortices in multicomponent and layered superconducting systems. That is, in contrast to most common models, the interactions in a group of such vortices is not a universal superposition of Coulomb or Yukawa forces. Next we consider the properties of vortex clusters in Semi-Meissner state of type-1.5 two-component superconductors. We show that under certain condition non-pairwise forces can contribute to formation of very complex vortex states in type-1.5 regimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا