We extract the pion valence quark distribution $q^pi_{rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical limit by investigating the finite lattice spacing, volume, quark mass, and higher-twist dependencies in a simultaneous fit of matrix elements computed on four gauge ensembles. We find remarkable consistency between our extracted $q^pi_{rm v}(x)$ and that obtained from experimental data across the entire $x$-range. Further, we demonstrate that the one-loop matching coefficient relating the LQCD matrix computed in position space to the $q_{rm v}^{pi}(x)$ in momentum space has well-controlled behavior with Ioffe time. This justifies that LQCD calculated current-current correlations are good observables for extracting partonic structures by using QCD factorization, which complements to the global effort to extract partonic structure from experimental data.