Do you want to publish a course? Click here

The Megamaser Cosmology Project. XI. A geometric distance to CGCG 074-064

66   0   0.0 ( 0 )
 Added by Dominic Pesce
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

As part of the survey component of the Megamaser Cosmology Project, we have discovered a disk megamaser system in the galaxy CGCG 074-064. Using the GBT and the VLA, we have obtained spectral monitoring observations of this maser system at a monthly cadence over the course of two years. We find that the systemic maser features display line-of-sight accelerations of ~4.4 km s$^{-1}$ yr$^{-1}$ that are nearly constant with velocity, while the high-velocity maser features show accelerations that are consistent with zero. We have also used the HSA to make a high-sensitivity VLBI map of the maser system in CGCG 074-064, which reveals that the masers reside in a thin, edge-on disk with a diameter of ~1.5 mas (0.6 pc). Fitting a three-dimensional warped disk model to the data, we measure a black hole mass of $2.42^{+0.22}_{-0.20} times 10^7$ M$_{odot}$ and a geometric distance to the system of $87.6^{+7.9}_{-7.2}$ Mpc. Assuming a CMB-frame recession velocity of $7308 pm 150$ km s$^{-1}$, we constrain the Hubble constant to $H_0 = 81.0^{+7.4}_{-6.9}$ (stat.) $pm 1.4$ (sys.) km s$^{-1}$ Mpc$^{-1}$.



rate research

Read More

We present the direct measurement of the Hubble constant, yielding the direct measurement of the angular-diameter distance to NGC 6264 using the H$_{2}$O megamaser technique. Our measurement is based on sensitive observations of the circumnuclear megamaser disk from four observations with the Very Long Baseline Array, the Green Bank Telescope and the Effelsberg Telescope. We also monitored the maser spectral profile for 2.3 years using the Green Bank Telescope to measure accelerations of maser lines by tracking their line-of-sight velocities as they change with time. The measured accelerations suggest that the systemic maser spots have a significantly wider radial distribution than in the archetypal megamaser in NGC 4258. We model the maser emission as arising from a circumnuclear disk with orbits dominated by the central black hole. The best fit of the data gives a Hubble constant of $H_{0} =$ 68$pm$9 km s$^{-1}$ Mpc$^{-1}$, which corresponds to an angular-diameter distance of 144$pm$19 Mpc. In addition, the fit also gives a mass of the central black hole of (3.09$pm$0.42)$times10^{7}$ $M_{odot}$. The result demonstrates the feasibility of measuring distances to galaxies located well into the Hubble flow by using circumnuclear megamaser disks.
The Hubble constant Ho describes not only the expansion of local space at redshift z ~ 0, but is also a fundamental parameter determining the evolution of the universe. Recent measurements of Ho anchored on Cepheid observations have reached a precision of several percent. However, this problem is so important that confirmation from several methods is needed to better constrain Ho and, with it, dark energy and the curvature of space. A particularly direct method involves the determination of distances to local galaxies far enough to be part of the Hubble flow through water vapor (H2O) masers orbiting nuclear supermassive black holes. The goal of this article is to describe the relevance of Ho with respect to fundamental cosmological questions and to summarize recent progress of the the `Megamaser Cosmology Project (MCP) related to the Hubble constant.
We use single-dish radio spectra of known 22 GHz H$_2$O megamasers, primarily gathered from the large dataset observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz & McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558-G009 that is likely the result of interstellar scintillation, for which we favor a nearby ($D approx 70$ pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially-propagating signal must be contributing $lesssim$10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200--300 mG ($1sigma$), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.
We present a measurement of the Hubble constant made using geometric distance measurements to megamaser-hosting galaxies. We have applied an improved approach for fitting maser data and obtained better distance estimates for four galaxies previously published by the Megamaser Cosmology Project: UGC 3789, NGC 6264, NGC 6323, and NGC 5765b. Combining these updated distance measurements with those for the maser galaxies CGCG 074-064 and NGC 4258, and assuming a fixed velocity uncertainty of 250 km s$^{-1}$ associated with peculiar motions, we constrain the Hubble constant to be $H_0 = 73.9 pm 3.0$ km s$^{-1}$ Mpc$^{-1}$ independent of distance ladders and the cosmic microwave background. This best value relies solely on maser-based distance and velocity measurements, and it does not use any peculiar velocity corrections. Different approaches for correcting peculiar velocities do not modify $H_0$ by more than ${pm}1{sigma}$, with the full range of best-fit Hubble constant values spanning 71.8-76.9 km s$^{-1}$ Mpc$^{-1}$. We corroborate prior indications that the local value of $H_0$ exceeds the early-Universe value, with a confidence level varying from 95-99% for different treatments of the peculiar velocities.
We present high resolution (sub-mas) VLBI maps of nuclear H2O megamasers for seven galaxies. In UGC6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central SMBH to be M_SMBH = 2.58*10^7Msun(+-7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range 1.5-2.0*10^7Msun. The origin of the masers in Mrk1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC6926, we detect a set of redshifted masers, clustered within a pc of each other, and a single blueshifted maser about 4.4pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M_SMBH<4.8*10^7 Msun . For NGC5793, we detect redshifted masers spaced about 1.4pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al.(2001). We estimate the enclosed mass to be M SMBH<1.3*10^7 Msun. For NGC2824 and J0350-0127, the masers may be associated with pc or sub-pc scale jets or outflows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا