Do you want to publish a course? Click here

Existence and asymptotic behavior of large axisymmetric solutions for steady Navier-Stokes system in a pipe

253   0   0.0 ( 0 )
 Added by Chunjing Xie
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, the existence and uniqueness of strong axisymmetric solutions with large flux for the steady Navier-Stokes system in a pipe are established even when the external force is also suitably large in $L^2$. Furthermore, the exponential convergence rate at far fields for the arbitrary steady solutions with finite $H^2$ distance to the Hagen-Poiseuille flows is established as long as the external forces converge exponentially at far fields. The key point to get the existence of these large solutions is the refined estimate for the derivatives in the axial direction of the stream function and the swirl velocity, which exploits the good effect of the convection term. An important observation for the asymptotic behavior of general solutions is that the solutions are actually small at far fields when they have finite $H^2$ distance to the Hagen-Poiseuille flows. This makes the estimate for the linearized problem play a crucial role in studying the convergence of general solutions at far fields.



rate research

Read More

In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove this problem has at least one helical invariant solution.
In this paper, we investigate the decay properties of an axisymmetric D-solutions to stationary incompressible Navier-Stokes systems in $mathbb{R}^3$. We obtain the optimal decay rate $|{bf u}(x)|leq frac{C}{|x|+1}$ for axisymmetric flows without swirl. Furthermore, we find a dichotomy for the decay rates of the swirl component $u_{theta}$, that is, either $O(frac{1}{r+1})leq |u_{theta}(r,z)|leq frac{Clog(r+1)}{(r+1)^{1/2}}$ or $|u_{theta}(r,z)|leq frac{C r}{(rho+1)^3}$, where $rho=sqrt{r^2+z^2}$. In the latter case, we can further deduce that the other two components of the velocity field also attain the optimal decay rates: $|u_r(r,z)|+ |u_{z}(r,z)|leq frac{C}{rho+1}$. We do not require any small assumptions on the forcing term.
We consider a full Navier-Stokes and $Q$-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time. This result is obtained without any smallness assumption on the physical parameter $xi$ that measures the ratio between tumbling and aligning effects of a shear flow exerting over the liquid crystal directors. Moreover, we show the uniqueness of asymptotic limit for each global strong solution as time goes to infinity and provide an uniform estimate on the convergence rate.
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best knowledge of authors, this is the first result on the existence of local-in-time smooth solution for particle-fluid model with nonlinear inter-particle operator for which the existence of time can be prolonged as the size of initial data gets smaller.
We study the long-time behavior an extended Navier-Stokes system in $R^2$ where the incompressibility constraint is relaxed. This is one of several reduced models of Grubb and Solonnikov 89 and was revisited recently (Liu, Liu, Pego 07) in bounded domains in order to explain the fast convergence of certain numerical schemes (Johnston, Liu 04). Our first result shows that if the initial divergence of the fluid velocity is mean zero, then the Oseen vortex is globally asymptotically stable. This is the same as the Gallay Wayne 05 result for the standard Navier-Stokes equations. When the initial divergence is not mean zero, we show that the analogue of the Oseen vortex exists and is stable under small perturbations. For completeness, we also prove global well-posedness of the system we study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا