No Arabic abstract
Domains walls and topological defects in ferroelectric materials have emerged as a powerful new paradigm for functional electronic devices including memory and logic. Similarly, wall interactions and dynamics underpin a broad range of mesoscale phenomena ranging from giant electromechanical responses to memory effects. Exploring the functionalities of individual domain walls, their interactions, and controlled modifications of the domain structures is crucial for applications and fundamental physical studies. However, the dynamic nature of these features severely limits studies of their local physics since application of local biases or pressures in piezoresponse force microscopy induce wall displacement as a primary response. Here, we introduce a fundamentally new approach for the control and modification of domain structures based on automated experimentation whereby real space image-based feedback is used to control the tip bias during ferroelectric switching, allowing for modification routes conditioned on domain states under the tip. This automated experiment approach is demonstrated for the exploration of domain wall dynamics and creation of metastable phases with large electromechanical response.
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.
To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electroelastic fields inside the material are derived for the cases of weak and strong indentation. In the weak indentation case, electrostatic field distribution is calculated using image charge model. In the strong indentation case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the electrostatic point charge and sphere-plane models, and the applicability limits for asymptotic point charge and point force models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.
We report the observation of $180^o$ phase switching on silicon wafers by piezo-response force microscopy (PFM). The switching is hysteretic and shows remarkable similarities with polarization switching in ferroelectrics. This is always accompanied by a hysteretic amplitude vs. voltage curve which resembles the butterfly loops for piezoelectric materials. From a detailed analysis of the data obtained under different environmental and experimental conditions, we show that the hysteresis effects in phase and amplitude do not originate from ferro-electricity or piezoelectricity. This further indicates that mere observation of hysteresis effects in PFM does not confirm the existence of ferroelectric and/or piezoelectric ordering in materials. We also show that when samples are mounted on silicon for PFM measurements, the switching properties of silicon may appear on the sample even if the sample thickness is large.
Piezoresponse force microscopy (PFM) is a powerful characterization technique to readily image and manipulate ferroelectrics domains. PFM gives insight into the strength of local piezoelectric coupling as well as polarization direction through PFM amplitude and phase, respectively. Converting measured arbitrary units to physical material parameters, however, remains a challenge. While much effort has been spent on quantifying the PFM amplitude signal, little attention has been given to the PFM phase and it is often arbitrarily adjusted to fit expectations or processed as recorded. This is problematic when investigating materials with unknown or potentially negative sign of the probed effective electrostrictive coefficient or strong frequency dispersion of electromechanical responses since assumptions about the phase cannot be reliably made. The PFM phase can, however, provide important information on the polarization orientation and the sign of the electrostrictive coefficient. Most notably, the orientation of the PFM hysteresis loop is determined by the PFM phase. Moreover, when presenting PFM data as a combined signal, the resulting response can be artificially lowered or asymmetric if the phase data has not been correctly processed. Here, we demonstrate a path to identify the phase offset required to extract correct meaning from PFM phase data. We explore different sources of phase offsets including the experimental setup, instrumental contributions, and data analysis. We discuss the physical working principles of PFM and develop a strategy to extract physical meaning from the PFM phase. The proposed procedures are verified on two materials with positive and negative piezoelectric coefficients.
Hafnium oxide (HfO2)-based ferroelectrics offer remarkable promise for memory and logic devices in view of their compatibility with traditional silicon CMOS technology, high switchable polarization, good endurance and thickness scalability. These factors have led to steep rise in research on this class of materials over the past number of years. At the same time, only a few reports on the direct sensing of nanoscale ferroelectric properties exist, with many questions remaining regarding the emergence of ferroelectricity in these materials. While piezoresponse force microscopy (PFM) is ideally suited to probe piezo- and ferro-electricity on the nanoscale, it is known to suffer artifacts which complicate quantitative interpretation of results and can even lead to claims of ferroelectricity in materials which are not ferroelectric. In this paper we explore the possibility of using an improved PFM method based on interferometric displacement sensing (IDS) to study nanoscale ferroelectricity in bare Si doped HfO2. Our results indicate a clear difference in the local remnant state of various HfO2 crystallites with reported values for the piezoelectric coupling in range 0.6-1.5 pm/V. In addition, we report unusual ferroelectric polarization switching including possible contributions from electrostriction and Vegard effect, which may indicate oxygen vacancies or interfacial effects influence the emergence of nanoscale ferroelectricity in HfO2.