Do you want to publish a course? Click here

Locating conical degeneracies in the spectra of parametric self-adjoint matrices

83   0   0.0 ( 0 )
 Added by Gregory Berkolaiko
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A simple iterative scheme is proposed for locating the parameter values for which a 2-parameter family of real symmetric matrices has a double eigenvalue. The convergence is proved to be quadratic. An extension of the scheme to complex Hermitian matrices (with 3 parameters) and to location of triple eigenvalues (5 parameters for real symmetric matrices) is also described. Algorithm convergence is illustrated in several examples: a real symmetric family, a complex Hermitian family, a family of matrices with an avoided crossing (no covergence) and a 5-parameter family of real symmetric matrices with a triple eigenvalue.



rate research

Read More

We consider a new class of non-self-adjoint matrices that arise from an indefinite self-adjoint linear pencil of matrices, and obtain the spectral asymptotics of the spectra as the size of the matrices diverges to infinity. We prove that the spectrum is qualitatively different when a certain parameter $c$ equals $0$, and when it is non-zero, and that certain features of the spectrum depend on Diophantine properties of $c$.
A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results prove recent conjectures by Knyazev, Argentati, and Zhu, which extend several known results for one dimensional subspaces to arbitrary subspaces. In addition, we improve Nakatsukasas version of the $tan Theta$ theorem of Davis and Kahan. As a consequence, we obtain new quadratic a posteriori bounds for the absolute change in Ritz values.
76 - Leonid Golinskii 2021
We study the trace class perturbations of the half-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we obtain the Lieb--Thirring inequalities for such operators. The spectral enclosure for the discrete spectrum and embedded eigenvalues are also discussed.
278 - John Weir 2008
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at $pm infty$. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of the eigenvalues numerically. We compare these to earlier calculations by other authors.
Let $Omega_-$ and $Omega_+$ be two bounded smooth domains in $mathbb{R}^n$, $nge 2$, separated by a hypersurface $Sigma$. For $mu>0$, consider the function $h_mu=1_{Omega_-}-mu 1_{Omega_+}$. We discuss self-adjoint realizations of the operator $L_{mu}=- ablacdot h_mu abla$ in $L^2(Omega_-cupOmega_+)$ with the Dirichlet condition at the exterior boundary. We show that $L_mu$ is always essentially self-adjoint on the natural domain (corresponding to transmission-type boundary conditions at the interface $Sigma$) and study some properties of its unique self-adjoint extension $mathcal{L}_mu:=overline{L_mu}$. If $mu e 1$, then $mathcal{L}_mu$ simply coincides with $L_mu$ and has compact resolvent. If $n=2$, then $mathcal{L}_1$ has a non-empty essential spectrum, $sigma_mathrm{ess}(mathcal{L}_{1})={0}$. If $nge 3$, the spectral properties of $mathcal{L}_1$ depend on the geometry of $Sigma$. In particular, it has compact resolvent if $Sigma$ is the union of disjoint strictly convex hypersurfaces, but can have a non-empty essential spectrum if a part of $Sigma$ is flat. Our construction features the method of boundary triplets, and the problem is reduced to finding the self-adjoint extensions of a pseudodifferential operator on $Sigma$. We discuss some links between the resulting self-adjoint operator $mathcal{L}_mu$ and some effects observed in negative-index materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا