Do you want to publish a course? Click here

Wandering Massive Black Holes or Analogs of the First Repeating Fast Radio Burst?

113   0   0.0 ( 0 )
 Added by Tarraneh Eftekhari
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of a persistent radio source coincident with the first repeating fast radio burst, FRB 121102, and offset from the center of its dwarf host galaxy has been used as evidence for a link with young millisecond magnetars born in superluminous supernovae (SLSNe) or long-duration gamma-ray bursts (LGRBs). A prediction of this scenario is that compact radio sources offset from the centers of dwarf galaxies may serve as signposts for at least some FRBs. Recently, Reines et al. 2019 presented the discovery of 20 such radio sources in nearby ($zlesssim 0.055$) dwarf galaxies, and argued that these cannot be explained by emission from HII regions, normal supernova remnants, or normal radio supernovae. Instead, they attribute the emission to accreting wandering massive black holes. Here, we explore the alternative possibility that these sources are analogs of FRB 121102. We compare their properties -- radio luminosities, spectral energy distributions, light curves, ratios of radio-to-optical flux, and spatial offsets -- to FRB 121102, a few other well-localized FRBs, and potentially related systems, and find that these are all consistent as arising from the same population. We further compare their properties to the magnetar nebula model used to explain FRB 121102, as well as to theoretical off-axis LGRB light curves, and find overall consistency. Finally, we find a consistent occurrence rate relative to repeating FRBs and LGRBs. We outline key follow-up observations to further test these possible connections.



rate research

Read More

Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star.
We investigate low-density accretion flows onto massive black holes (BHs) with masses of $gtrsim 10^5~M_odot$ orbiting around in the outskirts of their host galaxies, performing three-dimensional hydrodynamical simulations. Those wandering BHs are populated via ejection from the galactic nuclei through multi-body BH interactions and gravitational wave recoils associated with galaxy and BH coalescences. We find that when a wandering BH is fed with hot and diffuse plasma with density fluctuations, the mass accretion rate is limited at $sim 10-20%$ of the canonical Bondi-Hoyle-Littleton rate owing to a wide distribution of inflowing angular momentum. We further calculate radiation spectra from radiatively inefficient accretion flows onto the wandering BH using a semi-analytical two-temperature disk model and find that the predicted spectra have a peak at the millimeter band, where the Atacama Large Millimeter/submillimeter Array (ALMA) has the highest sensitivity and spatial resolution. Millimeter observations with ALMA and future facilities such as the next generation Very Large Array (ngVLA) will enable us to hunt for a population of wandering BHs and push the detectable mass limit down to $M_bullet simeq 2times10^7~M_odot$ for massive nearby ellipticals, e.g., M87, and $M_bullet simeq 10^5~M_odot$ for the Milky Way. This radiation spectral model, combined with numerical simulations, will be applied to give physical interpretations of off-nuclear BHs detected in dwarf galaxies, which may constrain BH seed formation scenarios.
101 - D.Li , P.Wang , W.W.Zhu 2021
The event rate, energy distribution, and time-domain behaviour of repeating fast radio bursts (FRBs) contains essential information regarding their physical nature and central engine, which are as yet unknown. As the first precisely-localized source, FRB 121102 has been extensively observed and shows non-Poisson clustering of bursts over time and a power-law energy distribution. However, the extent of the energy distribution towards the fainter end was not known. Here we report the detection of 1652 independent bursts with a peak burst rate of 122~hr^{-1}, in 59.5 hours spanning 47 days. A peak in the isotropic equivalent energy distribution is found to be ~4.8 x 10^{37} erg at 1.25~GHz, below which the detection of bursts is suppressed. The burst energy distribution is bimodal, and well characterized by a combination of a log-normal function and a generalized Cauchy function. The large number of bursts in hour-long spans allow sensitive periodicity searches between 1 ms and 1000 s. The non-detection of any periodicity or quasi-periodicity poses challenges for models involving a single rotating compact object. The high burst rate also implies that FRBs must be generated with a high radiative efficiency, disfavoring emission mechanisms with large energy requirements or contrived triggering conditions.
We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with low dispersion measure (DM), detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB project. The source DM of 87.82 pc cm$^{-3}$ is the lowest recorded from an FRB to date, yet is significantly higher than the maximum expected from the Milky Way interstellar medium in this direction (~ 50 pc cm$^{-3}$). We have detected three bursts and one candidate burst from the source over the period 2020 January-November. The baseband voltage data for the event on 2020 January 20 enabled a sky localization of the source to within $simeq$ 14 sq. arcmin (90% confidence). The FRB localization is close to M81, a spiral galaxy at a distance of 3.6 Mpc. The FRB appears on the outskirts of M81 (projected offset $sim$ 20 kpc) but well inside its extended HI and thick disks. We empirically estimate the probability of chance coincidence with M81 to be $< 10^{-2}$. However, we cannot reject a Milky Way halo origin for the FRB. Within the FRB localization region, we find several interesting cataloged M81 sources and a radio point source detected in the Very Large Array Sky Survey (VLASS). We searched for prompt X-ray counterparts in Swift/BAT and Fermi/GBM data, and for two of the FRB 20200120E bursts, we rule out coincident SGR 1806$-$20-like X-ray bursts. Due to the proximity of FRB 20200120E, future follow-up for prompt multi-wavelength counterparts and sub-arcsecond localization could be constraining of proposed FRB models.
Fast radio bursts (FRBs) are millisecond transients of unknown origin(s) occurring at cosmological distances. Here we, for the first time, show time-integrated-luminosity functions and volumetric occurrence rates of non-repeating and repeating FRBs against redshift. The time-integrated-luminosity functions of non-repeating FRBs do not show any significant redshift evolution. The volumetric occurrence rates are almost constant during the past $sim$10 Gyr. The nearly-constant rate is consistent with a flat trend of cosmic stellar-mass density traced by old stellar populations. Our findings indicate that the occurrence rate of non-repeating FRBs follows the stellar-mass evolution of long-living objects with $sim$Gyr time scales, favouring e.g. white dwarfs, neutron stars, and black holes, as likely progenitors of non-repeating FRBs. In contrast, the occurrence rates of repeating FRBs may increase towards higher redshifts in a similar way to the cosmic star formation-rate density or black hole accretion-rate density if the slope of their luminosity function does not evolve with redshift. Short-living objects with $lesssim$ Myr time scales associated with young stellar populations (or their remnants, e.g., supernova remnants, young pulsars, and magnetars) or active galactic nuclei might be favoured as progenitor candidates of repeating FRBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا