An analysis of the statistics of the non-linear terms in resolvent analysis is performed in this work for turbulent Couette flow at low Reynolds number. Data from a direct numerical simulation of a minimal flow unit, at Reynolds number 400, is post-processed using Fourier analysis in both time and space, leading to the covariance matrix of the velocity. From the same data, we computed the non-linear terms of the Navier-Stokes equations (treated as forcing in the present formulation), which allowed us to compute the covariance matrix of the forcing for this case. The two covariances are related exactly by the resolvent operator; based on this, we explore the recovery of the velocity statistics from the statistics of the forcing as a function of the components of the forcing term. This is carried out for the dominant structures in this flow, which participate in the self-sustaining cycle of turbulence: (i) streamwise vortices and streaks, and (ii) spanwise coherent fluctuations of spanwise velocity. The present results show a dominance by four of the non-linear terms for the prediction of the full statistics of streamwise vortices and streaks; a single term is seen to be dominant for spanwise motions. A relevant feature observed in these cases is that forcing terms have significant coherence in space; moreover, different forcing components are also coherent between them. This leads to constructive and destructive interferences that greatly modify the flow response, and should thus be accounted for in modelling work.