An ecological framework for the analysis of prebiotic chemical reaction networks and their dynamical behavior


Abstract in English

It is becoming widely accepted that very early in the origin of life, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed containers that are subject to constant dilution by a solution with a fixed concentration of food chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle (AC) with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an AC and the population of a biological species. We extend this finding to show that pairs of ACs can show competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of ACs, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence (survival of the first), which makes the path of succession historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here is helpful for visualizing how autocatalysis in prebiotic chemical reaction networks can yield life-like properties. Furthermore, chemical ecosystem ecology could provide a useful foundation for exploring the emergence of adaptive dynamics and the origins of polymer-based genetic systems.

Download