A parsec-scale wobbling jet in the high-synchrotron peaked blazar PG 1553+113


Abstract in English

PG 1553+113 is the first blazar showing an approximately two-year quasi-periodic pattern in its gamma-ray light curve. Such quasi-periodicity might have a geometrical origin, possibly related to the precessing nature of the jet, or could be intrinsic to the source and related to pulsational accretion flow instabilities. By means of a ~2yr very long baseline array (VLBA) monitoring at 15, 24, and 43 GHz we investigate the source pc-scale properties during an entire cycle of gamma-ray activity in the period 2015-2017. In contrast to the well-defined periodicity in the gamma-ray emission, at radio frequencies no clear periodic pattern can be recognized. The jet position angle, constrained by means of the total intensity ridge line, varies across the different observing epochs in the range 40-60 deg. We also investigate the time evolution of the source polarization properties, including the rotation measure. The brightness temperature is found to decrease as the frequency increases with an intrinsic value of ~1.5 x 10^10 K and the estimated Doppler factor is ~1.4.

Download