A century after observing the deflection of light emitted by distant stars during the solar eclipse of 1919, it is interesting to know the concepts emerged from the experiment and the theoretical and observational consequences for modern cosmology and astrophysics. In addition to confirming Einsteins gravitational theory, its greatest legacy was the construction of a new research area to cosmos science dubbed gravitational lensing. The formation and magnification of multiple images (mirages) by the gravitational field of a compact or extended lens are among the most striking phenomena of nature. This article presents a pedagogical view of the first genuine gravitational lens effect, the double quasar QSO 0957 + 561. We also describe the formation of rings, giant arcs, arclets and multiple Supernova images. It is also surprising that the Hubble constant and the amount of dark matter in the Universe can be measured by the same technique. Finally, the lensing of gravitational waves, a possible but still not yet detected effect, is also briefly discussed.