C*-Algebras of extensions of groupoids by group bundles


Abstract in English

Given a normal subgroup bundle $mathcal A$ of the isotropy bundle of a groupoid $Sigma$, we obtain a twisted action of the quotient groupoid $Sigma/mathcal A$ on the bundle of group $C^*$-algebras determined by $mathcal A$ whose twisted crossed product recovers the groupoid $C^*$-algebra $C^*(Sigma)$. Restricting to the case where $mathcal A$ is abelian, we describe $C^*(Sigma)$ as the $C^*$-algebra associated to a $mathbf T$-groupoid over the tranformation groupoid obtained from the canonical action of $Sigma/mathcal A$ on the Pontryagin dual space of $mathcal A$. We give some illustrative examples of this result.

Download