Do you want to publish a course? Click here

Privacy in Data Service Composition

141   0   0.0 ( 0 )
 Added by Mahmoud Barhamgi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In modern information systems different information features, about the same individual, are often collected and managed by autonomous data collection services that may have different privacy policies. Answering many end-users legitimate queries requires the integration of data from multiple such services. However, data integration is often hindered by the lack of a trusted entity, often called a mediator, with which the services can share their data and delegate the enforcement of their privacy policies. In this paper, we propose a flexible privacy-preserving data integration approach for answering data integration queries without the need for a trusted mediator. In our approach, services are allowed to enforce their privacy policies locally. The mediator is considered to be untrusted, and only has access to encrypted information to allow it to link data subjects across the different services. Services, by virtue of a new privacy requirement, dubbed k-Protection, limiting privacy leaks, cannot infer information about the data held by each other. End-users, in turn, have access to privacy-sanitized data only. We evaluated our approach using an example and a real dataset from the healthcare application domain. The results are promising from both the privacy preservation and the performance perspectives.



rate research

Read More

Privacy is an increasingly important aspect of data publishing. Reasoning about privacy, however, is fraught with pitfalls. One of the most significant is the auxiliary information (also called external knowledge, background knowledge, or side information) that an adversary gleans from other channels such as the web, public records, or domain knowledge. This paper explores how one can reason about privacy in the face of rich, realistic sources of auxiliary information. Specifically, we investigate the effectiveness of current anonymization schemes in preserving privacy when multiple organizations independently release anonymized data about overlapping populations. 1. We investigate composition attacks, in which an adversary uses independent anonymized releases to breach privacy. We explain why recently proposed models of limited auxiliary information fail to capture composition attacks. Our experiments demonstrate that even a simple instance of a composition attack can breach privacy in practice, for a large class of currently proposed techniques. The class includes k-anonymity and several recent variants. 2. On a more positive note, certain randomization-based notions of privacy (such as differential privacy) provably resist composition attacks and, in fact, the use of arbitrary side information. This resistance enables stand-alone design of anonymization schemes, without the need for explicitly keeping track of other releases. We provide a precise formulation of this property, and prove that an important class of relaxations of differential privacy also satisfy the property. This significantly enlarges the class of protocols known to enable modular design.
A major feature of the emerging geo-social networks is the ability to notify a user when one of his friends (also called buddies) happens to be geographically in proximity with the user. This proximity service is usually offered by the network itself or by a third party service provider (SP) using location data acquired from the users. This paper provides a rigorous theoretical and experimental analysis of the existing solutions for the location privacy problem in proximity services. This is a serious problem for users who do not trust the SP to handle their location data, and would only like to release their location information in a generalized form to participating buddies. The paper presents two new protocols providing complete privacy with respect to the SP, and controllable privacy with respect to the buddies. The analytical and experimental analysis of the protocols takes into account privacy, service precision, and computation and communication costs, showing the superiority of the new protocols compared to those appeared in the literature to date. The proposed protocols have also been tested in a full system implementation of the proximity service.
Big Data is used by data miner for analysis purpose which may contain sensitive information. During the procedures it raises certain privacy challenges for researchers. The existing privacy preserving methods use different algorithms that results into limitation of data reconstruction while securing the sensitive data. This paper presents a clustering based privacy preservation probabilistic model of big data to secure sensitive information..model to attain minimum perturbation and maximum privacy. In our model, sensitive information is secured after identifying the sensitive data from data clusters to modify or generalize it.The resulting dataset is analysed to calculate the accuracy level of our model in terms of hidden data, lossed data as result of reconstruction. Extensive experiements are carried out in order to demonstrate the results of our proposed model. Clustering based Privacy preservation of individual data in big data with minimum perturbation and successful reconstruction highlights the significance of our model in addition to the use of standard performance evaluation measures.
185 - Rulin Shao , Hongyu He , Hui Liu 2019
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to take control over their sensitive information during both training and using processes. To address this problem, we propose a privacy-preserving method for the distributed system, Stochastic Channel-Based Federated Learning (SCBF), which enables the participants to train a high-performance model cooperatively without sharing their inputs. Specifically, we design, implement and evaluate a channel-based update algorithm for the central server in a distributed system, which selects the channels with regard to the most active features in a training loop and uploads them as learned information from local datasets. A pruning process is applied to the algorithm based on the validation set, which serves as a model accelerator. In the experiment, our model presents better performances and higher saturating speed than the Federated Averaging method which reveals all the parameters of local models to the server when updating. We also demonstrate that the saturating rate of performance could be promoted by introducing a pruning process. And further improvement could be achieved by tuning the pruning rate. Our experiment shows that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUCROC performance and a reduction of 0.0068 in AUCPR.
We give a fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of privacy loss random variables to quantify the privacy loss of DP algorithms. The running time and memory needed for our algorithm to approximate the privacy curve of a DP algorithm composed with itself $k$ times is $tilde{O}(sqrt{k})$. This improves over the best prior method by Koskela et al. (2020) which requires $tilde{Omega}(k^{1.5})$ running time. We demonstrate the utility of our algorithm by accurately computing the privacy loss of DP-SGD algorithm of Abadi et al. (2016) and showing that our algorithm speeds up the privacy computations by a few orders of magnitude compared to prior work, while maintaining similar accuracy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا