Do you want to publish a course? Click here

Analysis of exchange interactions in dimers of Mn3 single-molecule magnets, and their sensitivity to external pressure

53   0   0.0 ( 0 )
 Added by Jie-Xiang Yu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In light of the potential use of single-molecule magnets (SMMs) in emerging quantum information science initiatives, we report first-principles calculations of the magnetic exchange interactions in [$mathrm{Mn}_{3}$]$_{2}$ dimers of $mathrm{Mn}_3$ SMMs, connected by covalently-attached organic linkers, that have been synthesized and studied experimentally by magnetochemistry and EPR spectroscopy. Energy evaluations calibrated to experimental results give the sign and order of magnitude of the exchange coupling constant ($J_{12}$) between the two $mathrm{Mn}_{3}$ units that match with fits of magnetic susceptibility data and EPR spectra. Downfolding into the $mathrm{Mn}$ $d$-orbital basis, Wannier function analysis has shown that magnetic interactions can be channeled by ligand groups that are bonded by van der Waals interaction and/or by the linkers via covalent bonding of specific systems, and effective tight-binding Hamiltonians are obtained. We call this long-range coupling that involves a group of atoms a collective exchange. Orbital projected spin density of states and alternative Wannier transformations support this observation. To assess the sensitivity of $J_{12}$ to external pressure, stress-strain curves have been investigated for both hydrostatic and uniaxial pressure, which have revealed a switch of $J_{12}$ from ferromagnetic to antiferromagnetic with increasing pressure.

rate research

Read More

We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. See also: W. Wernsdorfer, N. Aliaga-Alcalde, D. Hendrickson, G. Christou, Nature 416 (2002) 406.
Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by application of external stimuli for device applications. In order to provide insight onto the origin and mechanism of such tunability, here we investigate the magnetic hyperfine and nuclear quadrupole interactions for $^{159}$Tb nucleus in TbPc$_2$ (Pc=phthalocyanine) single-molecule magnets using multireference ab-initio methods including spin-orbit interaction. Since the electronic ground and first-excited (quasi)doublets are well separated in energy, the microscopic Hamiltonian can be mapped onto an effective Hamiltonian with an electronic pseudo-spin $S=1/2$. From the ab-initio-calculated parameters, we find that the magnetic hyperfine coupling is dominated by the interaction of the Tb nuclear spin with electronic orbital angular momentum. The asymmetric $4f$-like electronic charge distribution leads to a strong nuclear quadrupole interaction with significant non-axial terms for the molecule with low symmetry. The ab-initio calculated electronic-nuclear spectrum including the magnetic hyperfine and quadrupole interactions is in excellent agreement with experiment. We further find that the non-axial quadrupole interactions significantly influence the avoided level crossings in magnetization dynamics and that the molecular distortions affect mostly the Fermi contact terms as well as the non-axial quadrupole interactions.
Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.
We present a detailed study of the influence of various interactions on the spin quantum tunneling in a Mn12 wheel molecule. The effects of single-ion and exchange (spin-orbit) anisotropy are first considered, followed by an analysis of the roles played by secondary influences, e.g. disorder, dipolar and hyperfine fields, and magnetoacoustic interactions. Special attention is paid to the role of the antisymmetric Dzyaloshinski-Moriya (DM) interaction. This is done within the framework of a 12-spin microscopic model, and also using simplified dimer and tetramer approximations in which the electronic spins are grouped in 2 or 4 blocks, respectively. If the molecule is inversion symmetric, the DM interaction between the dimer halves must be zero. In an inversion symmetric tetramer, two independent DM vectors are allowed, but no new tunneling transitions are generated by the DM interaction. Experiments on the Mn12 wheel can only be explained if the molecular inversion symmetry is broken, and we explore this in detail using both models, focussing on the asymmetric disposition and rounding of Berry phase minima associated with quantum interference between states of opposite parity. A remarkable behavior exists for the `Berry phase zeroes as a function of the directions of the internal DM vectors and the external transverse field. A rather drastic breaking of the molecular inversion-symmetry is required to explain the experiments; in the tetramer model this requires a reorientation of the DM vectors on one half of the molecule by nearly 180 degrees. This cannot be attributed to sample disorder. These results are of general interest for the quantum dynamics of tunneling spins, and lead to some interesting experimental predictions.
127 - Lei Gu , Ruqian Wu 2020
The Raman exponent of single-molecular magnetic relaxation may take various unexpected values because of rich phonon spectrum and spin-phonon coupling of molecular crystals. We systematically examine the origins of different abnormalities, and clarify misunderstandings in the past, particularly the appropriateness of the fitting procedures for the exponents. We find that exponential laws raised by optical phonons can yield spurious power laws with low exponents. This observation indicates long-standing misunderstandings for origins of low Raman exponents in a large bulk of single-molecule magnets. Resulting from spin-lattice coupling with optical modes, presence of these exponents suggests the importance of the local dynamical environment for the magnetic relaxation in this regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا