Do you want to publish a course? Click here

ZTF Early Observations of Type Ia Supernovae II: First Light, the Initial Rise, and Time to Reach Maximum Brightness

243   0   0.0 ( 0 )
 Added by Adam Miller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

While it is clear that Type Ia supernovae (SNe) are the result of thermonuclear explosions in C/O white dwarfs (WDs), a great deal remains uncertain about the binary companion that facilitates the explosive disruption of the WD. Here, we present a comprehensive analysis of a large, unique data set of 127 SNe$,$Ia with exquisite coverage by the Zwicky Transient Facility (ZTF). High-cadence (six observations per night) ZTF observations allow us to measure the SN rise time and examine its initial evolution. We develop a Bayesian framework to model the early rise as a power law in time, which enables the inclusion of priors in our model. For a volume-limited subset of normal SNe$,$Ia, we find that the mean power-law index is consistent with 2 in the $r_mathrm{ZTF}$-band ($alpha_r = 2.01pm0.02$), as expected in the expanding fireball model. There are, however, individual SNe that are clearly inconsistent with $alpha_r=2$. We estimate a mean rise time of 18.9$,$d (with a range extending from $sim$15 to 22$,$d), though this is subject to the adopted prior. We identify an important, previously unknown, bias whereby the rise times for higher-redshift SNe within a flux-limited survey are systematically underestimated. This effect can be partially alleviated if the power-law index is fixed to $alpha=2$, in which case we estimate a mean rise time of 21.7$,$d (with a range from $sim$18 to 23$,$d). The sample includes a handful of rare and peculiar SNe$,$Ia. Finally, we conclude with a discussion of lessons learned from the ZTF sample that can eventually be applied to observations from the Vera C. Rubin Observatory.



rate research

Read More

Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain their progenitor properties. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point spread function (PSF) photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night ($3g+3r$), all of the 127 SNe Ia are detected in both $g$ and $r$ band more than 10,d (in the rest frame) prior to the epoch of $g$-band maximum light. The redshifts of these objects range from $z=0.0181$ to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14,d prior to maximum light (in the rest frame), with a subset of 9 objects being detected more than 17,d before $g$-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample, including one 02cx-like event ZTF18abclfee (SN,2018crl), one Ia-CSM SN ZTF18aaykjei (SN,2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN,2018eul), ZTF18abdpvnd (SN,2018dvf), ZTF18aawpcel (SN,2018cir) and ZTF18abddmrf (SN,2018dsx).
198 - WeiKang Zheng 2016
We investigate a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe~Ia) that is able to estimate the first-light time of SNe~Ia, even when they are not discovered extremely early. With an improved ability to estimate the time of first light for SNe Ia, we compute the rise times for a sample of 56 well-observed SNe~Ia. We find rise times ranging from 10.5 to 20.5 days, with a mean of 16.0 days, and confirm that the rise time is generally correlated with the decline rate $Delta m_{15}(B)$, but with large scatter. The rise time could be an additional parameter to help classify SN~Ia subtypes.
With a booming number of Type Ia supernovae (SNe Ia) discovered within a few days of their explosions, a fraction of SNe Ia that show luminosity excess in the early phase (early-excess SNe Ia) have been confirmed. In this article, we report early-phase observations of seven photometrically normal SNe Ia (six early detections and one deep non-detection limit) at the COSMOS field through a half-year transient survey as a part of the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP). In particular, a blue light-curve excess was discovered for HSC17bmhk, a normal SN Ia with rise time longer than 18.8 days, during the first four days after the discovery. The blue early excess in optical wavelength can be explained not only by interactions with a non-degenerate companion or surrounding dense circumstellar matter but also radiation powered by radioactive decays of $^{56}$Ni at the surface of the SN ejecta. Given the growing evidence of the early-excess discoveries in normal SNe Ia that have longer rise times than the average and a similarity in the nature of the blue excess to a luminous SN Ia subclass, we infer that early excess discovered in HSC17bmhk and other normal SNe Ia are most likely attributed to radioactive $^{56}$Ni decay at the surface of the SN ejecta. In order to successfully identify normal SNe Ia with early excess similar to that of HSC17bmhk, early UV photometries or high-cadence blue-band surveys are necessary.
We investigate the early-time light-curves of a large sample of 223 type II supernovae (SNe) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At restframe g-band (4722A), we find a distribution of fast rise-times with median of (7.5+/-0.3) days. Comparing these durations with analytical shock models of Rabinak and Waxman (2013); Nakar and Sari (2010) and hydrodynamical models of Tominaga et al. (2009), which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or b) the delayed and prolonged shock breakout of the collapse of a RSG with an extended atmosphere or embedded within pre-SN circumstellar material.
101 - Xulin Zhao 2015
The high-velocity features (HVFs) in optical spectra of type Ia supernovae (SNe Ia) are examined with a large sample including very early-time spectra (e.g., t < -7 days). Multiple Gaussian fits are applied to examine the HVFs and their evolutions, using constraints on expansion velocities for the same species (i.e., SiII 5972 and SiII 6355). We find that strong HVFs tend to appear in SNe Ia with smaller decline rates (e.g., dm15(B)<1.4 mag), clarifying that the finding by Childress et al. (2014) for the Ca-HVFs in near-maximum-light spectra applies both to the Si-HVFs and Ca-HVFs in the earlier phase. The Si-HVFs seem to be more common in fast-expanding SNe Ia, which is different from the earlier result that the Ca-HVFs are associated with SNe Ia having slower SiII 6355 velocities at maximum light (i.e., Vsi). This difference can be due to that the HVFs in fast-expanding SNe Ia usually disappear more rapidly and are easily blended with the photospheric components when approaching the maximum light. Moreover, SNe Ia with both stronger HVFs at early phases and larger Vsi are found to have noticeably redder B-V colors and occur preferentially in the inner regions of their host galaxies, while those with stronger HVFs but smaller Vsi show opposite tendencies, suggesting that these two subclasses have different explosion environments and their HVFs may have different origins. We further examine the relationships between the absorption features of SiII 6355 and CaII IR lines, and find that their photospheric components are well correlated in velocity and strength but the corresponding HVFs show larger scatter. These results cannot be explained with ionization and/or thermal processes alone, and different mechanisms are required for the creation of HVF-forming region in SNe Ia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا