Do you want to publish a course? Click here

Multi-transversals for Triangles and the Tuzas Conjecture

132   0   0.0 ( 0 )
 Added by Pattara Sukprasert
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study a primal and dual relationship about triangles: For any graph $G$, let $ u(G)$ be the maximum number of edge-disjoint triangles in $G$, and $tau(G)$ be the minimum subset $F$ of edges such that $G setminus F$ is triangle-free. It is easy to see that $ u(G) leq tau(G) leq 3 u(G)$, and in fact, this rather obvious inequality holds for a much more general primal-dual relation between $k$-hyper matching and covering in hypergraphs. Tuza conjectured in $1981$ that $tau(G) leq 2 u(G)$, and this question has received attention from various groups of researchers in discrete mathematics, settling various special cases such as planar graphs and generalized to bounded maximum average degree graphs, some cases of minor-free graphs, and very dense graphs. Despite these efforts, the conjecture in general graphs has remained wide open for almost four decades. In this paper, we provide a proof of a non-trivial consequence of the conjecture; that is, for every $k geq 2$, there exist a (multi)-set $F subseteq E(G): |F| leq 2k u(G)$ such that each triangle in $G$ overlaps at least $k$ elements in $F$. Our result can be seen as a strengthened statement of Krivelevichs result on the fractional version of Tuzas conjecture (and we give some examples illustrating this.) The main technical ingredient of our result is a charging argument, that locally identifies edges in $F$ based on a local view of the packing solution. This idea might be useful in further studying the primal-dual relations in general and the Tuzas conjecture in particular.



rate research

Read More

Tuza famously conjectured in 1981 that in a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum average degree, including planar graphs. However, for dense graphs that are neither cliques nor 4-colorable, only asymptotic results are known. Here, we confirm the conjecture for threshold graphs, i.e. graphs that are both split graphs and cographs, and for co-chain graphs with both sides of the same size divisible by 4.
Threshold graphs are a class of graphs that have many equivalent definitions and have applications in integer programming and set packing problems. A graph is said to have a threshold cover of size $k$ if its edges can be covered using $k$ threshold graphs. Chvatal and Hammer, in 1977, defined the threshold dimension $mathrm{th}(G)$ of a graph $G$ to be the least integer $k$ such that $G$ has a threshold cover of size $k$ and observed that $mathrm{th}(G)geqchi(G^*)$, where $G^*$ is a suitably constructed auxiliary graph. Raschle and Simon~[Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC 95, pages 650--661, 1995] proved that $mathrm{th}(G)=chi(G^*)$ whenever $G^*$ is bipartite. We show how the lexicographic method of Hell and Huang can be used to obtain a completely new and, we believe, simpler proof for this result. For the case when $G$ is a split graph, our method yields a proof that is much shorter than the ones known in the literature.
Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.
Following the groundbreaking algorithm of Moser and Tardos for the Lovasz Local Lemma (LLL), there has been a plethora of results analyzing local search algorithms for various constraint satisfaction problems. The algorithms considered fall into two broad categories: resampling algorithms, analyzed via different algorithmic LLL conditions; and backtracking algorithms, analyzed via entropy compression arguments. This paper introduces a new convergence condition that seamlessly handles resampling, backtracking, and hybrid algorithms, i.e., algorithms that perform both resampling and backtracking steps. Unlike all past LLL work, our condition replaces the notion of a dependency or causality graph by quantifying point-to-set correlations between bad events. As a result, our condition simultaneously: (i)~captures the most general algorithmic LLL condition known as a special case; (ii)~significantly simplifies the analysis of entropy compression applications; (iii)~relates backtracking algorithms, which are conceptually very different from resampling algorithms, to the LLL; and most importantly (iv)~allows for the analysis of hybrid algorithms, which were outside the scope of previous techniques. We give several applications of our condition, including a new hybrid vertex coloring algorithm that extends the recent breakthrough result of Molloy for coloring triangle-free graphs to arbitrary graphs.
124 - Igor Markov 2007
Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree reduction can be performed through a sequence of splittings of vertices, resulting in an _expansion_ of the original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not performed carefully. In this context we address the following natural question: is it possible to reduce the maximum degree to a constant without substantially increasing the treewidth? Our work answers the above question affirmatively. We prove that any simple undirected graph G=(V, E) admits an expansion G=(V, E) with the maximum degree <= 3 and treewidth(G) <= treewidth(G)+1. Furthermore, such an expansion will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed efficiently from a tree-decomposition of G. We also construct a family of examples for which the increase by 1 in treewidth cannot be avoided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا