No Arabic abstract
We experimentally demonstrate a broadband, fabrication tolerant, CMOS compatible compact silicon waveguide taper (34.2 um) in silicon-on-insulator wire waveguides. The taper works on multi-mode interference along the length of the taper. A single taper design has a broadband operation with coupling efficiency >70% over 700 nm that can be used in O, C and L-band. The compact taper is highly tolerant to fabrication variations; >100 nm change in the taper and end waveguide width varies the taper transmission by <5%. The footprint of the device i.e. taper along with the linear gratings is ~ 442 m2; i.e. 11.5X smaller than the adiabatic taper. The taper with linear gratings provides comparable coupling efficiency as standardly used focusing gratings. We have also compared the translational and rotational alignment tolerance of the focusing grating with the linear grating.
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide waveguide to a 1 um wide photonic wire. The taper has a spectral response > 75% spanning over 800 nm and resilience to fabrication variations; >200 nm change in taper and end waveguide width varies transmission by <5%. We experimentally demonstrate taper insertion loss of <0.1 dB/transition for a taper as short as 19.5 um, and reduces the footprint of the photonic device by 50.8% compared to the standard adiabatic taper. To the best of our knowledge, the proposed taper is the shortest waveguide taper ever reported in Silicon Nitride.
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10 dB) dominates the total insertion losses of typical LN photonic integrated circuits, where on-chip propagation losses can be as low as 0.03 - 0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetric guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.
Graphene has extraordinary electro-optic properties and is therefore a promising candidate for monolithic photonic devices such as photodetectors. However, the integration of this atom-thin layer material with bulky photonic components usually results in a weak light-graphene interaction leading to large device lengths limiting electro-optic performance. In contrast, here we demonstrate a plasmonic slot graphene photodetector on silicon-on-insulator platform with high-responsivity given the 5 um-short device length. We observe that the maximum photocurrent, and hence the highest responsivity, scales inversely with the slot gap width. Using a dual-lithography step, we realize 15 nm narrow slots that show a 15-times higher responsivity per unit device-length compared to photonic graphene photodetectors. Furthermore, we reveal that the back-gated electrostatics is overshadowed by channel-doping contributions induced by the contacts of this ultra-short channel graphene photodetector. This leads to quasi charge neutrality, which explains both the previously-unseen offset between the maximum photovoltaic-based photocurrent relative to graphenes Dirac point and the observed non-ambipolar transport. Such micrometer compact and absorption-efficient photodetectors allow for short-carrier pathways in next-generation photonic components, while being an ideal testbed to study short-channel carrier physics in graphene optoelectronics.
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.
On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.