Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing


Abstract in English

We describe an experimental setup for producing a large cold erbium (Er) sample in a narrow-line magneto-optical trap (MOT) in a simple and efficient way. We implement a pair of angled slowing beams with respect to the Zeeman slower axis, and further slow down atoms exiting from the Zeeman slower. The second-stage slowing beams enable the narrow-line MOT to trap atoms exiting from the Zeeman slower with higher velocity. This scheme is particularly useful when the Zeeman slower is at low optical power without the conventional transverse cooling between an oven and a Zeeman slower, in which case we significantly improve the loading efficiency into the MOT and are able to trap more than $10^8$ atoms in the narrow-line MOT of $^{166}$Er. This work highlights our implementation, which greatly simplifies laser cooling and trapping of Er atoms and also should benefit other similar elements.

Download