No Arabic abstract
Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint qualification. Moreover RCPLD is known to induce an error bound property. In this paper we extend RCPLD to a very general feasibility system which may include Lipschitz continuous inequality constraints, complementarity constraints and abstract constraints. We show that this RCPLD for the general system is a constraint qualification for the optimality condition in terms of limiting subdifferential and limiting normal cone and it is a sufficient condition for the error bound property under the strict complementarity condition for the complementarity system and Clarke regularity conditions for the inequality constraints and the abstract constraint set. Moreover we introduce and study some sufficient conditions for RCPLD including the relaxed constant rank constraint qualification (RCRCQ). Finally we apply our results to the bilevel program.
A bilevel program is an optimization problem whose constraints involve another optimization problem. This paper studies bilevel polynomial programs (BPPs), i.e., all the functions are polynomials. We reformulate BPPs equivalently as semi-infinite polynomial programs (SIPPs), using Fritz John conditions and Jacobian representations. Combining the exchange technique and Lasserre type semidefinite relaxations, we propose numerical methods for solving both simple and general BPPs. For simple BPPs, we prove the convergence to global optimal solutions. Numerical experiments are presented to show the efficiency of proposed algorithms.
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it results in a nonsmooth optimization problem which never satisfies the usual constraint qualification such as the Mangasarian-Fromovitz constraint qualification (MFCQ). In this paper we show that even the first order sufficient condition for metric subregularity (which is in general weaker than MFCQ) fails at each feasible point of the bilevel program. We introduce the concept of directional calmness condition and show that under {the} directional calmness condition, the directional necessary optimality condition holds. {While the directional optimality condition is in general sharper than the non-directional one,} the directional calmness condition is in general weaker than the classical calmness condition and hence is more likely to hold. {We perform the directional sensitivity analysis of the value function and} propose the directional quasi-normality as a sufficient condition for the directional calmness. An example is given to show that the directional quasi-normality condition may hold for the bilevel program.
In this paper, we present difference of convex algorithms for solving bilevel programs in which the upper level objective functions are difference of convex functions, and the lower level programs are fully convex. This nontrivial class of bilevel programs provides a powerful modelling framework for dealing with applications arising from hyperparameter selection in machine learning. Thanks to the full convexity of the lower level program, the value function of the lower level program turns out to be convex and hence the bilevel program can be reformulated as a difference of convex bilevel program. We propose two algorithms for solving the reformulated difference of convex program and show their convergence under very mild assumptions. Finally we conduct numerical experiments to a bilevel model of support vector machine classification.
For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This contrasts with the fact that the natural polytope for this problem, formed from the convex hull of all satisfiable formulas and their satisfying assignments, has superpolynomial extension complexity. Our formulation is based on multicommodity flows. We also discuss connections of these results to the stable matching problem.
We derive equivalent linear and dynamic programs for infinite horizon risk-sensitive control for minimization of the asymptotic growth rate of the cumulative cost.