Logarithmic tail contributions to the energy function of circular compact binaries


Abstract in English

We combine different techniques to extract information about the logarithmic contributions to the two-body conservative dynamics within the post-Newtonian (PN) approximation of General Relativity. The logarithms come from the conservative part of non linear gravitational-wave tails and their iterations. Explicit, original expressions are found for conservative dynamics logarithmic tail terms up to 6PN order by adopting both traditional PN calculations and effective field theory (EFT) methods. We also determine all logarithmic terms at 7PN order, fixing a sub-leading logarithm from a tail-of-tail-of-tail process by comparison with self-force (SF) results. Moreover, we use renormalization group techniques to obtain the leading logarithmic terms to generic power $n$, appearing at $(3n+1)$PN order, and we resum the infinite series in a closed form. Half-integer PN orders enter the conservative dynamics starting at 5.5PN, but they do not generate logarithmic contributions up to next-to-next-to-leading order included. We nevertheless present their contribution at leading order in the small mass ratio limit.

Download