Do you want to publish a course? Click here

Logarithmic tail contributions to the energy function of circular compact binaries

127   0   0.0 ( 0 )
 Added by Riccardo Sturani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine different techniques to extract information about the logarithmic contributions to the two-body conservative dynamics within the post-Newtonian (PN) approximation of General Relativity. The logarithms come from the conservative part of non linear gravitational-wave tails and their iterations. Explicit, original expressions are found for conservative dynamics logarithmic tail terms up to 6PN order by adopting both traditional PN calculations and effective field theory (EFT) methods. We also determine all logarithmic terms at 7PN order, fixing a sub-leading logarithm from a tail-of-tail-of-tail process by comparison with self-force (SF) results. Moreover, we use renormalization group techniques to obtain the leading logarithmic terms to generic power $n$, appearing at $(3n+1)$PN order, and we resum the infinite series in a closed form. Half-integer PN orders enter the conservative dynamics starting at 5.5PN, but they do not generate logarithmic contributions up to next-to-next-to-leading order included. We nevertheless present their contribution at leading order in the small mass ratio limit.



rate research

Read More

A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more efficient observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
We extend the gravitational self-force approach to encompass `self-interaction tidal effects for a compact body of mass $mu$ on a quasi-circular orbit around a black hole of mass $M gg mu$. Specifically, we define and calculate at $O(mu)$ (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at $O(mu)$. We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body problem that are invaluable in the ongoing search for gravitational waves.
229 - Jan Steinhoff 2014
Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.
67 - Yong Xiao , Yu Tian 2021
It has been known for many years that the leading correction to the black hole entropy is a logarithmic term, which is universal and closely related to conformal anomaly. A fully consistent analysis of this issue has to take quantum backreactions to the black hole geometry into account. However, it was always unclear how to naturally derive the modified black hole metric especially from an effective action, because the problem refers to the elusive non-locality of quantum gravity. In this paper, we show that this problem can be resolved within an effective field theory (EFT) framework of quantum gravity. Our work suggests that the EFT approach provides a powerful and self-consistent tool for studying the quantum gravitational corrections to black hole geometries and thermodynamics.
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calculations of these effects have been beset by obstacles. In this letter we present the first implementation of a complete scheme for second-order self-force computations, specialized to the case of quasicircular orbits about a Schwarzschild black hole. As a demonstration, we calculate the gravitational binding energy of these binaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا