Do you want to publish a course? Click here

Equivariant aspects of singular instanton Floer homology

181   0   0.0 ( 0 )
 Added by Christopher Scaduto
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We associate several invariants to a knot in an integer homology 3-sphere using $SU(2)$ singular instanton gauge theory. There is a space of framed singular connections for such a knot, equipped with a circle action and an equivariant Chern-Simons functional, and our constructions are morally derived from the associated equivariant Morse chain complexes. In particular, we construct a triad of groups analogous to the knot Floer homology package in Heegaard Floer homology, several Fr{o}yshov-type invariants which are concordance invariants, and more. The behavior of our constructions under connected sums are determined. We recover most of Kronheimer and Mrowkas singular instanton homology constructions from our invariants. Finally, the ADHM description of the moduli space of instantons on the 4-sphere can be used to give a concrete characterization of the moduli spaces involved in the invariants of spherical knots, and we demonstrate this point in several examples.



rate research

Read More

189 - Benjamin Audoux 2017
We define a grid presentation for singular links i.e. links with a finite number of rigid transverse double points. Then we use it to generalize link Floer homology to singular links. Besides the consistency of its definition, we prove that this homology is acyclic under some conditions which naturally make its Euler characteristic vanish.
We define Floer homology theories for oriented, singular knots in S^3 and show that one of these theories can be defined combinatorially for planar singular knots.
113 - Christopher Scaduto 2018
Using instanton Floer theory, extending methods due to Froyshov, we determine the definite lattices that arise from smooth 4-manifolds bounded by certain homology 3-spheres. For example, we show that for +1 surgery on the (2,5) torus knot, the only non-diagonal lattices that can occur are E8 and the indecomposable unimodular definite lattice of rank 12, up to diagonal summands. We require that our 4-manifolds have no 2-torsion in their homology.
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.
This is a survey of bordered Heegaard Floer homology, an extension of the Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is placed on how bordered Heegaard Floer homology can be used for computations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا