Do you want to publish a course? Click here

Enhanced $mathcal{P,T}$-violating nuclear magnetic quadrupole moment effects in laser-coolable molecules

86   0   0.0 ( 0 )
 Added by Malika Denis
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear magnetic quadrupole moments (MQMs), like intrinsic electric dipole moments of elementary particles, violate both parity and time-reversal symmetry and therefore probe physics beyond the Standard Model of particle physics. We report on accurate relativistic coupled cluster calculations of the nuclear MQM interaction constants in BaF, YbF, BaOH, and YbOH. We elaborate on estimates of the uncertainty of our results. The implications of experiments searching for nonzero nuclear MQMs are discussed.



rate research

Read More

We show that existing calculations of the interaction between nuclear Schiff moments and electrons in molecules use an inaccurate operator which gives rise to significant errors. By comparing the matrix elements of the accurate and imprecise Schiff moment operators, we calculated the correction factor as a function of the nuclear charge Z and presented corrected results for the T,P-violating interaction of the nuclear spin with the molecular axis in the TlF, RaO, PbO, TlCN, ThO, AcF molecules and in the ferroelectric solid PbTiO$_3$.
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $mathcal{P}$,$mathcal{T}$-violation. Previous studies concentrated on the calculations for different geometries without the averaging over the rovibrational wave function and stressed the possibility that the dependence of the $mathcal{P}$, $mathcal{T}$ parameters on the bond angle may significantly alter the observed value. We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian. The potential surface is constructed based on the two-component relativistic CCSD(T) computation employing the generalized relativistic effective core potential (GRECP) for the Radium atom. The averaged values of the parameters $E_{rm eff}$ and $E_s$ describing the sensitivity of the system to the electron electric dipole moment and the scalar-pseudoscalar nucleon-electron interaction are calculated and the value of $l$-doubling is obtained.
152 - V. V. Flambaum , D. DeMille , 2014
Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T,P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T,P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T,P-odd effects in the molecules TaN, ThO, ThF$^+$, HfF$^+$, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T,P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T,P-odd nuclear forces, on the proton, neutron and quark EDMs, on quark chromo-EDMs, and on the QCD $theta$-term and CP-violating quark interactions.
Present limit on the electron electric dipole moment ($e$EDM) is based on the electron spin precession measurement. We propose an alternative approach - observation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect in an external electric field on atoms and molecules using cavity-enhanced polarimetric scheme in combination with molecular (atomic) beam crossing the cavity. Our calculations of the effective electric fields and theoretical simulation of the proposed experiment on Tl and Pb atoms, PbF, YbF, ThO, and YbOH show that the present limit on the $e$EDM can be improved by 6-7 orders of magnitude.
Recently a number of diatomic and polyatomics molecules has been identified as a prospective systems for Doppler/Sisyphus cooling. Doppler/Sisyphus cooling allows to decrease the kinetic energy of molecules down to microkelvin temperatures with high efficiency and then capture them to molecular traps, including magneto-optical trap. Trapped molecules can be used for creation of molecular fountains and/or performing controlled chemical reactions, high-precision spectra measurements and a multitude of other applications. Polyatomic molecules with heavy nuclei present considerable interest for the search for new physics outside of Standard Model and other applications including cold chemistry, photochemistry, quantum informatics etc. Herein we would like to attract attention to radium monohydroxide molecule (RaOH) which is on the one hand an amenable object for laser cooling and on the other hand provides extensive possibilities for searching for P-odd and P,T-odd effects. At the moment RaOH is the heaviest polyatomic molecule proposed for direct cooling with lasers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا