No Arabic abstract
In its permanent quest of mechanobiological homeostasis, our vascula-ture significantly adapts across multiple length and time scales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R) has significantly improved our insights of the mechanobio-logical processes of diseases such as hypertension or aneurysms. However, patient-specific computational modeling of ascending thoracic aortic aneurysm (ATAA) evolution, based on finite-element models (FEM), remains a challenging scientific problem with rare contributions, despite the major significance of this topic of research. Challenges are related to complex boundary conditions and geometries combined with layer-specific G&R responses. To address these challenges, in the current paper, we employed the constrained mixture model (CMM) to model the arterial wall as a mixture of different constituents such as elastin, collagen fiber families and smooth muscle cells (SMCs). Implemented in Abaqus as a UMAT, this first patient-specific CMM-based FEM of G&R in human ATAA was first validated for canonical problems such as single-layer thick-wall cylindrical and bi-layer thick-wall toric arterial geometries. Then it was used to predict ATAA evolution for a patient-specific aortic geometry, showing that the typical shape of an ATAA can be simply produced by elastin proteolysis localized in regions of deranged hemodymanics. The results indicate a transfer of stress to the adventitia by elastin loss and continuous adaptation of the stress distribution due to change of ATAA shape. Moreover, stress redistribution leads to collagen deposition where the maximum elastin mass is lost, which in turn leads to stiffening of the arterial wall. As future work, the predictions of this G&R framework will be validated on datasets of patient-specific ATAA geometries followed up over a significant number of years.
In this article, we present a multispecies reaction-advection-diffusion partial differential equation (PDE) coupled with linear elasticity for modeling tumor growth. The model aims to capture the phenomenological features of glioblastoma multiforme observed in magnetic resonance imaging (MRI) scans. These include enhancing and necrotic tumor structures, brain edema and the so called mass effect, that is, the deformation of brain tissue due to the presence of the tumor. The multispecies model accounts for proliferating, invasive and necrotic tumor cells as well as a simple model for nutrition consumption and tumor-induced brain edema. The coupling of the model with linear elasticity equations with variable coefficients allows us to capture the mechanical deformations due to the tumor growth on surrounding tissues. We present the overall formulation along with a novel operator-splitting scheme with components that include linearly-implicit preconditioned elliptic solvers, and semi-Lagrangian method for advection. Also, we present results showing simulated MRI images which highlight the capability of our method to capture the overall structure of glioblastomas in MRIs.
We present an effective method to model empirical action potentials of specific patients in the human atria based on the minimal model of Bueno-Orovio, Cherry and Fenton adapted to atrial electrophysiology. In this model, three ionic are currents introduced, where each of it is governed by a characteristic time scale. By applying a nonlinear optimization procedure, a best combination of the respective time scales is determined, which allows one to reproduce specific action potentials with a given amplitude, width and shape. Possible applications for supporting clinical diagnosis are pointed out.
A patient-specific fluid-structure interaction (FSI) model of a phase-contrast magnetic resonance angiography (PC-MRA) imaged arteriovenous fistula is presented. The numerical model is developed and simulated using a commercial multiphysics simulation package where a semi-implicit FSI coupling scheme combines a finite volume method blood flow model and a finite element method vessel wall model. A pulsatile mass-flow boundary condition is prescribed at the artery inlet of the model, and a three-element Windkessel model at the artery and vein outlets. The FSI model is freely available for analysis and extension. This work shows the effectiveness of combining a number of stabilisation techniques to simultaneously overcome the added-mass effect and optimise the efficiency of the overall model. The PC-MRA data, fluid model, and FSI model results show almost identical flow features in the fistula; this applies in particular to a flow recirculation region in the vein that could potentially lead to fistula failure.
Invasive intracranial electroencephalography (iEEG) or electrocorticography (ECoG) measures electrical potential directly on the surface of the brain, and, combined with numerical modeling, can be used to inform treatment planning for epilepsy surgery. Accurate solution of the iEEG or ECoG forward problem, which is a crucial prerequisite for solving the inverse problem in epilepsy seizure onset localization, requires accurate representation of the patients brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative MRI is incompatible with implanted electrodes and CT has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electrical potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the leadfield matrix also showed significant differences between the different models. The results suggest that significant improvements in source localization accuracy may be realized by the application of the proposed modeling methodology.
We present a numerical scheme for solving an inverse problem for parameter estimation in tumor growth models for glioblastomas, a form of aggressive primary brain tumor. The growth model is a reaction-diffusion partial differential equation (PDE) for the tumor concentration. We use a PDE-constrained optimization formulation for the inverse problem. The unknown parameters are the reaction coefficient (proliferation), the diffusion coefficient (infiltration), and the initial condition field for the tumor PDE. Segmentation of Magnetic Resonance Imaging (MRI) scans from a single time snapshot drive the inverse problem where segmented tumor regions serve as partial observations of the tumor concentration. The precise time relative to tumor initiation is unknown, which poses an additional difficulty for inversion. We perform a frozen-coefficient spectral analysis and show that the inverse problem is severely ill-posed. We introduce a biophysically motivated regularization on the tumor initial condition. In particular, we assume that the tumor starts at a few locations (enforced with a sparsity constraint) and that the initial condition magnitude in the maximum norm equals one. We solve the resulting optimization problem using an inexact quasi-Newton method combined with a compressive sampling algorithm for the sparsity constraint. Our implementation uses PETSc and AccFFT libraries. We conduct numerical experiments on synthetic and clinical images to highlight the improved performance of our solver over an existing solver that uses a two-norm regularization for the calibration parameters. The existing solver is unable to localize the initial condition. Our new solver can localize the initial condition and recover infiltration and proliferation. In clinical datasets (for which the ground truth is unknown), our solver results in qualitatively different solutions compared to the existing solver.