Do you want to publish a course? Click here

Velocity and acceleration statistics in particle-laden turbulent swirling flows

195   0   0.0 ( 0 )
 Added by Sof\\'ia Angriman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as well as inertial particles, are considered. Results indicate that, in spite of the differences in boundary conditions and forcing mechanisms, scaling properties and statistical quantities reveal similarities between both flows, pointing to new methods to calibrate and compare models for particles dynamics in numerical simulations, as well as to characterize the dynamics of particles in simulations and experiments.

rate research

Read More

145 - J. Berg 2006
We present Lagrangian one-particle statistics from the Risoe PTV experiment of a turbulent flow. We estimate the Lagrangian Kolmogorov constant $C_0$ and find that it is affected by the large scale inhomogeneities of the flow. The pdf of temporal velocity increments are highly non-Gaussian for small times which we interpret as a consequence of intermittency. Using Extended Self-Similarity we manage to quantify the intermittency and find that the deviations from Kolmogorov 1941 similarity scaling is larger in the Lagrangian framework than in the Eulerian. Through the multifractal model we calculate the multifractal dimension spectrum.
We present an investigation of the statistics of velocity gradient related quantities, in particluar energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic turbulent flow. The Refined Similarity Hypothesis (RSH) proposed by Kolmogorov and Oboukhov in 1962 is rephrased in the Lagrangian context and then tested along the particle trajectories. The study is performed on state-of-the-art numerical data resulting from numerical simulations up to Re~400 with 2048^3 collocation points. When particles have small inertia, we show that the Lagrangian formulation of the RSH is well verified for time lags larger than the typical response time of the particle. In contrast, in the large inertia limit when the particle response time approaches the integral-time-scale of the flow, particles behave nearly ballistic, and the Eulerian formulation of RSH holds in the inertial-range.
We develop a stochastic model for Lagrangian velocity as it is observed in experimental and numerical fully developed turbulent flows. We define it as the unique statistically stationary solution of a causal dynamics, given by a stochastic differential equation. In comparison to previously proposed stochastic models, the obtained process is infinitely differentiable at a given finite Reynolds number, and its second-order statistical properties converge to those of an Ornstein-Uhlenbeck process in the infinite Reynolds number limit. In this limit, it exhibits furthermore intermittent scaling properties, as they can be quantified using higher-order statistics. To achieve this, we begin with generalizing the two-layered embedded stochastic process of Sawford (1991) by considering an infinite number of layers. We then study, both theoretically and numerically, the convergence towards a smooth (i.e. infinitely differentiable) Gaussian process. To include intermittent corrections, we follow similar considerations as for the multifractal random walk of Bacry et al. (2001). We derive in an exact manner the statistical properties of this process, and compare them to those estimated from Lagrangian trajectories extracted from numerically simulated turbulent flows. Key predictions of the multifractal formalism regarding acceleration correlation function and high-order structure functions are also derived. Through these predictions, we understand phenomenologically peculiar behaviours of the fluctuations in the dissipative range, that are not reproduced by our stochastic process. The proposed theoretical method regarding the modelling of infinitely differentiability opens the route to the full stochastic modelling of velocity, including the peculiar action of viscosity on the very fine scales.
Data from Direct Numerical Simulations of disperse bubbly flows in a vertical channel are used to study the effect of the bubbles on the carrier-phase turbulence. A new method is developed, based on the barycentric map approach, that allows to quantify the anisotropy and componentiality of the flow at any scale. Using this the bubbles are found to significantly enhance flow anisotropy at all scales compared with the unladen case, and for some bubble cases, very strong anisotropy persists down to the smallest flow scales. The strongest anisotropy observed was for the cases involving small bubbles. Concerning the inter-scale energy transfer, our results indicate that for the bubble-laden cases, the energy transfer is from large to small scales, just as for the unladen case. However, there is evidence of an upscale transfer when considering the transfer of energy associated with particular components of the velocity field. Although the direction of the energy transfer is the same with and without the bubbles, the transfer is much stronger for the bubble-laden cases, suggesting that the bubbles play a strong role in enhancing the activity of the nonlinear term in the flow. The normalized forms of the fourth and sixth-order structure functions are also considered, and reveal that the introduction of bubbles into the flow strongly enhances intermittency in the dissipation range, but suppresses it at larger scales. This strong enhancement of the dissipation scale intermittency has significant implications for understanding how the bubbles might modify the mixing properties of turbulent flows.
The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orientation. Based on suitable assumptions about the vortices statistical properties, the statistics of the velocity increments is derived. In particular, the origin and nature of small-scale intermittency in this model is investigated both numerically and analytically.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا