Five dimensional Chern-Simons Gravity for the expanded (anti)-de Sitter gauge group C$_5$


Abstract in English

We study the Hamiltonian dynamics of a five-dimensional Chern-Simons theory for the gauge algebra $C_5$ of Izaurieta, Rodriguez and Salgado, the so-called S$_H$-expansion of the 5D (anti-)de Sitter algebra (a)ds, based on the cyclic group $mathbb{Z}_4$. The theory consists of a 1-form field containing the (a)ds gravitation variables and 1-form field transforming in the adjoint representation of (a)ds. The gravitational part of the action necessarily contains a term quadratic in the curvature, beyond the Einstein-Hilbert and cosmological terms, for any choice of the two independent coupling constants. The total action is also invariant under a new local symmetry, called crossed diffeomorphisms, beyond the usual space-time diffeomorphisms. The number of physical degrees of freedom is computed. The theory is shown to be generic in the sense of Ba~nados, Garay and Henneaux, i.e., the constraint associated to the time diffeomorphisms is not independent from the other constraints.

Download