Zero-Sum Differential Games on the Wasserstein Space


Abstract in English

We consider two-player zero-sum differential games (ZSDGs), where the state process (dynamical system) depends on the random initial condition and the state processs distribution, and the objective functional includes the state processs distribution and the random target variable. Unlike ZSDGs studied in the existing literature, the ZSDG of this paper introduces a new technical challenge, since the corresponding (lower and upper) value functions are defined on $mathcal{P}_2$ (the set of probability measures with finite second moments) or $mathcal{L}_2$ (the set of random variables with finite second moments), both of which are infinite-dimensional spaces. We show that the (lower and upper) value functions on $mathcal{P}_2$ and $mathcal{L}_2$ are equivalent (law invariant) and continuous, satisfying dynamic programming principles. We use the notion of derivative of a function of probability measures in $mathcal{P}_2$ and its lifted version in $mathcal{L}_2$ to show that the (lower and upper) value functions are unique viscosity solutions to the associated (lower and upper) Hamilton-Jacobi-Isaacs equations that are (infinite-dimensional) first-order PDEs on $mathcal{P}_2$ and $mathcal{L}_2$, where the uniqueness is obtained via the comparison principle. Under the Isaacs condition, we show that the ZSDG has a value.

Download