Parity-preserving and magnetic field resilient superconductivity in indium antimonide nanowires with tin shells


Abstract in English

We study bottom-up grown semiconductor indium antimonide nanowires that are coated with shells of tin. The shells are uniform in thickness. The interface between Sn and InSb is abrupt and without interdiffusion. Devices for transport are prepared by in-situ shadowing of nanowires using nearby nanowires as well as flakes, resulting in etch-free junctions. Tin is found to induce a hard superconducting gap in the range 600-700 micro-eV. Superconductivity persists up to 4 T in magnetic field. A tin island exhibits the coveted two-electron charging effect, a hallmark of charge parity stability. The findings open avenues for superconducting and topological quantum circuits based on new superconductor-semiconductor combinations.

Download