Do you want to publish a course? Click here

Light Dark Matter: A Common Solution to the Lithium and ${H_0}$ Problems

107   0   0.0 ( 0 )
 Added by Farinaldo Queiroz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Currently, the standard cosmological model faces some tensions and discrepancies between observations at early and late cosmological time. One of them concerns the well-known $H_0$-tension problem, i.e., a $sim4.4sigma$-difference between the early-time estimate and late-time measurements of the Hubble constant, $H_0$. Another puzzling question rests in the cosmological lithium abundance, where again local measurements differ from the one predicted by Big Bang Nucleosynthesis (BBN). In this work, we show that a mechanism of light dark matter production might hold the answer for these questions. If dark matter particles are sufficiently light and a fraction of them was produced non-thermally in association with photons, this mechanism has precisely what is needed to destroy Lithium without spoiling other BBN predictions. Besides, it produces enough radiation that leads to a larger $H_0$ value, reconciling early and late-time measurements of the Hubble expansion rate without leaving sizable spectral distortions in the Cosmic Microwave Background spectrum.



rate research

Read More

It has been suggested that late-universe dark matter decays can alleviate the tension between measurements of $H_0$ in the local universe and its value inferred from cosmic microwave background fluctuations. Decaying dark matter can potentially account for this discrepancy as it reshuffles the energy density between matter and radiation and as a result allows dark energy to become dominant at earlier times. We show that the low multipoles amplitude of the cosmic microwave background anisotropy power spectrum severely constrains the feasibility of late-time decays as a solution to the $H_0$ tension.
Motivated by the swampland dS conjecture, we consider a rolling scalar field as the source of dark energy. Furthermore, the swampland distance conjecture suggests that the rolling field will lead at late times to an exponentially light tower of states. Identifying this tower as residing in the dark sector suggests a natural coupling of the scalar field to the dark matter, leading to a continually reducing dark matter mass as the scalar field rolls in the recent cosmological epoch. The exponent in the distance conjecture, $tilde{c}$, is expected to be an $mathcal{O}(1)$ number. Interestingly, when we include the local measurement of $H_0$, our model prefers a non-zero value of the coupling $tilde{c}$ with a significance of $2.8sigma$ and a best-fit at $tilde{c} sim 0.3$. Modifying the recent evolution of the universe in this way improves the fit to data at the $2sigma$ level compared to $Lambda$CDM. This string-inspired model automatically reduces cosmological tensions in the $H_0$ measurement as well as $sigma_8$.
We study the cosmological effects of two-body dark matter decays where the products of the decay include a massless and a massive particle. We show that if the massive daughter particle is slightly warm it is possible to relieve the tension between distance ladder measurements of the present day Hubble parameter with measurements from the cosmic microwave background.
We constrain and update the bounds on the life-time of a decaying dark matter model with a warm massive daughter particle using the most recent low-redshift probes. We use Supernovae Type-Ia, Baryon Acoustic Oscillations and the time delay measurements of gravitationally lensed quasars. These data sets are complemented by the early universe priors taken from the Cosmic Microwave background. For the maximum allowed fraction of the relativistic daughter particle, the updated bounds on the life-time are found to be $tau > 9, rm{Gyr}$ and $tau >11,rm{Gyr}$ at $95%$ C.L., for the two-body and many-body decay scenarios, respectively. We also comment on the recent proposal that the current two-body decaying dark matter model can provide resolution for the $H_0$-tension, by contrasting against the standard $Lambda$CDM model. We infer that the current dark matter decaying scenario is unlikely to alleviate the $H_0$-tension. We find that the decaying dark matter is able to reduce the trend of the decreasing $H_0$ values with increasing lens redshifts observed in the strong lensing dataset.
The possibility that the so-called lithium problem, i.e. the disagreement between the theoretical abundance predicted for primordial $^7$Li assuming standard nucleosynthesis and the value inferred from astrophysical measurements, can be solved through a non-thermal BBN mechanism has been investigated by several authors. In particular, it has been shown that the decay of a MeV-mass particle, like, e.g., a sterile neutrino, decaying after BBN not only solves the lithium problem, but also satisfies cosmological and laboratory bounds, making such a scenario worth to be investigated in further detail. In this paper, we constrain the parameters of the model with the combination of current data, including Planck 2015 measurements of temperature and polarization anisotropies of the CMB, FIRAS limits on spectral distortions, astrophysical measurements of primordial abundances and laboratory constraints. We find that a sterile neutrino with mass $M_S=4.35_{-0.17}^{+0.13},MeV$ (at $95%$ c.l.), a decay time $tau_S=1.8_{-1.3}^{+2.5}cdot 10^5,s$ (at $95%$ c.l.) and an initial density $bar{n}_S/bar{n}_{cmb}=1.7_{-0.6}^{+3.5}cdot 10^{-4}$ (at $95%$ c.l.) in units of the number density of CMB photons, perfectly accounts for the difference between predicted and observed $^7$Li primordial abundance. This model also predicts an increase of the effective number of relativistic degrees of freedom at the time of CMB decoupling $Delta N_{eff}^{cmb}equiv N_{eff}^{cmb}-3.046=0.34_{-0.14}^{+0.16}$ at $95%$ c.l.. The required abundance of sterile neutrinos is incompatible with the standard thermal history of the Universe, but could be realized in a low reheating temperature scenario. We provide forecasts for future experiments finding that the combination of measurements from the COrE+ and PIXIE missions will allow to significantly reduce the permitted region for the sterile lifetime and density.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا