Do you want to publish a course? Click here

Off-Grid Aware Spatial Covariance Estimation in mmWave Communications

499   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work investigates the problem of spatial covariance matrix estimation in a millimeter-wave (mmWave) hybrid multiple-input multiple-output (MIMO) system with an emphasis on the basis-mismatch effect. The basis mismatch is prevalent in the compressed sensing (CS) schemes which adopt discretization procedure. In such an approach, the algorithm yields a finite discrete point which is an approximation to the continuous parametric space. The quality of this approximation depends on the number of discretized points in the dictionary. Instead of increasing the number of discretized points to combat this off-grid effect, we propose an efficient parameter perturbed framework which uses a controlled perturbation mechanism in conjunction with the orthogonal matching pursuit (OMP) algorithm. Numerical results verify the performance improvement through our proposed algorithm in terms of relative efficiency metric, which is basically due to taking care of the off-grid effect carefully that is ignored in the conventional CS algorithms.



rate research

Read More

The spectrum scarcity at sub-6 GHz spectrum has made millimeter-wave (mmWave) frequency band a key component of the next-generation wireless networks. While mmWave spectrum offers extremely large transmission bandwidths to accommodate ever-increasing data rates, unique characteristics of this new spectrum need special consideration to achieve the promised network throughput. In this work, we consider the off-grid problem for mmWave communications, which has a significant impact on basic network functionalities involving beam steering and tracking. The off-grid effect naturally appears in compressed sensing (CS) techniques adopting a discretization approach for representing the angular domain. This approach yields a finite set of discrete angle points, which are an approximation to the continuous angular space, and hence degrade the accuracy of related parameter estimation. In order to cope with the off-grid effect, we present a novel parameter-perturbation framework to efficiently estimate the channel and the covariance for mmWave networks. The proposed algorithms employ a smart perturbation mechanism in conjunction with a low-complexity greedy framework of simultaneous orthogonal matching pursuit (SOMP), and jointly solve for the off-grid parameters and weights. Numerical results show a significant performance improvement through our novel framework as a result of handling the off-grid effects, which is totally ignored in the conventional sparse mmWave channel or covariance estimation algorithms.
In this paper, we tackle channel estimation in millimeter-wave hybrid multiple-input multiple-output systems by considering off-grid effects. In particular, we assume that spatial parameters can take any value in the angular domain, and need not fall on predefined discretized angles. Instead of increasing the number of discretized points to combat off-grid effects, we use implicit Dirichlet kernel structure in the Fourier domain, which conventional compressed sensing methods do not use. We propose greedy low-complexity algorithms based on orthogonal matching pursuit (OMP); our core idea is to traverse the Dirichlet kernel peak using estimates of the discrete Fourier transform. We demonstrate the efficacy of our proposed algorithms compared to standard OMP reconstruction. Numerical results show that our proposed algorithms obtain smaller reconstruction errors when off-grid effects are accounted for.
This paper proposed a low-complexity antenna layout-aware (ALA) covariance matrix estimation method. In the estimation process, antenna layout is assumed known at the estimator. Using this information, the estimator finds antenna pairs with statistically equivalent covariance values and sets their covariance values to the average of covariance values of all these antenna pairs. ALA for both uniform linear array (ULA) and uniform planar array (UPA) is discussed. This method takes the benefit that covariance matrices do not have full degrees of freedom. Then, the proposed ALA covariance matrix method is applied to a multi-cell network. Simulations have demonstrated that the proposed method can provide better performance than the widely used viaQ method, with respect to mean square errors and downlink spectral efficiencies.
Location information offered by external positioning systems, e.g., satellite navigation, can be used as prior information in the process of beam alignment and channel parameter estimation for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multiple-input multiple-output networks. Benefiting from the availability of such prior information, albeit imperfect, the beam alignment and channel parameter estimation processes can be significantly accelerated with less candidate beams explored at all the terminals. We propose a practical channel parameter estimation method via atomic norm minimization, which outperforms the standard beam alignment in terms of both the mean square error and the effective spectrum efficiency for the same training overhead.
Switch-based hybrid network is a promising implementation for beamforming in large-scale millimetre wave (mmWave) antenna arrays. By fully exploiting the sparse nature of the mmWave channel, such hybrid beamforming reduces complexity and power consumption when compared with a structure based on phase shifters. However, the difficulty of designing an optimum beamformer in the analog domain is prohibitive due to the binary nature of such a switch-based structure. Thus, here we propose a new method for designing a switch-based hybrid beamformer for massive MIMO communications in mmWave bands. We first propose a method for decoupling the joint optimization of analog and digital beamformers by confining the problem to a rank-constrained subspace. We then approximate the solution through two approaches: norm maximization (SHD-NM), and majorization (SHD-QRQU). In the norm maximization method, we propose a modified sequential convex programming (SCP) procedure that maximizes the mutual information while addressing the mismatch incurred from approximating the log-determinant by a Frobenius norm. In the second method, we employ a lower bound on the mutual information by QR factorization. We also introduce linear constraints in order to include frequently-used partially-connected structures. Finally, we show the feasibility, and effectiveness of the proposed methods through several numerical examples. The results demonstrate ability of the proposed methods to track closely the spectral efficiency provided by unconstrained optimal beamformer and phase shifting hybrid beamformer, and outperform a competitor switch-based hybrid beamformer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا