Do you want to publish a course? Click here

ColosseumRL: A Framework for Multiagent Reinforcement Learning in $N$-Player Games

116   0   0.0 ( 0 )
 Added by Alexander Shmakov
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Much of recent success in multiagent reinforcement learning has been in two-player zero-sum games. In these games, algorithms such as fictitious self-play and minimax tree search can converge to an approximate Nash equilibrium. While playing a Nash equilibrium strategy in a two-player zero-sum game is optimal, in an $n$-player general sum game, it becomes a much less informative solution concept. Despite the lack of a satisfying solution concept, $n$-player games form the vast majority of real-world multiagent situations. In this paper we present a new framework for research in reinforcement learning in $n$-player games. We hope that by analyzing behavior learned by agents in these environments the community can better understand this important research area and move toward meaningful solution concepts and research directions. The implementation and additional information about this framework can be found at https://colosseumrl.igb.uci.edu/.



rate research

Read More

In many real-world tasks, multiple agents must learn to coordinate with each other given their private observations and limited communication ability. Deep multiagent reinforcement learning (Deep-MARL) algorithms have shown superior performance in such challenging settings. One representative class of work is multiagent value decomposition, which decomposes the global shared multiagent Q-value $Q_{tot}$ into individual Q-values $Q^{i}$ to guide individuals behaviors, i.e. VDN imposing an additive formation and QMIX adopting a monotonic assumption using an implicit mixing method. However, most of the previous efforts impose certain assumptions between $Q_{tot}$ and $Q^{i}$ and lack theoretical groundings. Besides, they do not explicitly consider the agent-level impact of individuals to the whole system when transforming individual $Q^{i}$s into $Q_{tot}$. In this paper, we theoretically derive a general formula of $Q_{tot}$ in terms of $Q^{i}$, based on which we can naturally implement a multi-head attention formation to approximate $Q_{tot}$, resulting in not only a refined representation of $Q_{tot}$ with an agent-level attention mechanism, but also a tractable maximization algorithm of decentralized policies. Extensive experiments demonstrate that our method outperforms state-of-the-art MARL methods on the widely adopted StarCraft benchmark across different scenarios, and attention analysis is further conducted with valuable insights.
Collective human knowledge has clearly benefited from the fact that innovations by individuals are taught to others through communication. Similar to human social groups, agents in distributed learning systems would likely benefit from communication to share knowledge and teach skills. The problem of teaching to improve agent learning has been investigated by prior works, but these approaches make assumptions that prevent application of teaching to general multiagent problems, or require domain expertise for problems they can apply to. This learning to teach problem has inherent complexities related to measuring long-term impacts of teaching that compound the standard multiagent coordination challenges. In contrast to existing works, this paper presents the first general framework and algorithm for intelligent agents to learn to teach in a multiagent environment. Our algorithm, Learning to Coordinate and Teach Reinforcement (LeCTR), addresses peer-to-peer teaching in cooperative multiagent reinforcement learning. Each agent in our approach learns both when and what to advise, then uses the received advice to improve local learning. Importantly, these roles are not fixed; these agents learn to assume the role of student and/or teacher at the appropriate moments, requesting and providing advice in order to improve teamwide performance and learning. Empirical comparisons against state-of-the-art teaching methods show that our teaching agents not only learn significantly faster, but also learn to coordinate in tasks where existing methods fail.
Collaboration requires agents to align their goals on the fly. Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans. We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous. Starting with pretrained, single-agent point to point navigation policies and using noisy, high-dimensional sensor inputs like lidar, we first learn via self-supervision motion predictions of all agents on the team. Next, HPP uses the prediction models to propose and evaluate navigation subgoals for completing the rendezvous task without explicit communication among agents. We evaluate HPP in a suite of unseen environments, with increasing complexity and numbers of obstacles. We show that HPP outperforms alternative reinforcement learning, path planning, and heuristic-based baselines on challenging, unseen environments. Experiments in the real world demonstrate successful transfer of the prediction models from sim to real world without any additional fine-tuning. Altogether, HPP removes the need for a centralized operator in multiagent systems by combining model-based RL and inference methods, enabling agents to dynamically align plans.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-levels benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the systems global Q-values into individual agents Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا