Do you want to publish a course? Click here

General Matrix-Matrix Multiplication Using SIMD features of the PIII

57   0   0.0 ( 0 )
 Added by Jonathan Baxter
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Generalised matrix-matrix multiplication forms the kernel of many mathematical algorithms. A faster matrix-matrix multiply immediately benefits these algorithms. In this paper we implement efficient matrix multiplication for large matrices using the floating point Intel Pentium SIMD (Single Instruction Multiple Data) architecture. A description of the issues and our solution is presented, paying attention to all levels of the memory hierarchy. Our results demonstrate an average performance of 2.09 times faster than the leading public domain matrix-matrix multiply routines.



rate research

Read More

256 - Xiaoyan Liu , Yi Liu , Ming Dun 2021
Although the matrix multiplication plays a vital role in computational linear algebra, there are few efficient solutions for matrix multiplication of the near-sparse matrices. The Sparse Approximate Matrix Multiply (SpAMM) is one of the algorithms to fill the performance gap neglected by traditional optimizations for dense/sparse matrix multiplication. However, existing SpAMM algorithms fail to exploit the performance potential of GPUs for acceleration. In this paper, we present cuSpAMM, the first parallel SpAMM algorithm optimized for multiple GPUs. Several performance optimizations have been proposed, including algorithm re-design to adapt to the thread parallelism, blocking strategies for memory access optimization, and the acceleration with the tensor core. In addition, we scale cuSpAMM to run on multiple GPUs with an effective load balance scheme. We evaluate cuSpAMM on both synthesized and real-world datasets on multiple GPUs. The experiment results show that cuSpAMM achieves significant performance speedup compared to vendor optimized cuBLAS and cuSPARSE libraries.
The A64FX CPU powers the current number one supercomputer on the Top500 list. Although it is a traditional cache-based multicore processor, its peak performance and memory bandwidth rival accelerator devices. Generating efficient code for such a new architecture requires a good understanding of its performance features. Using these features, we construct the Execution-Cache-Memory (ECM) performance model for the A64FX processor in the FX700 supercomputer and validate it using streaming loops. We also identify architectural peculiarities and derive optimization hints. Applying the ECM model to sparse matrix-vector multiplication (SpMV), we motivate why the CRS matrix storage format is inappropriate and how the SELL-C-sigma format with suitable code optimizations can achieve bandwidth saturation for SpMV.
285 - Weifeng Liu , Brian Vinter 2015
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the resulting sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input matrices. In this work we propose a framework for SpGEMM on GPUs and emerging CPU-GPU heterogeneous processors. This framework particularly focuses on the above three problems. Memory pre-allocation for the resulting matrix is organized by a hybrid method that saves a large amount of global memory space and efficiently utilizes the very limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load balancing builds on the number of necessary arithmetic operations on the nonzero entries and is guaranteed in all stages. Compared with the state-of-the-art CPU and GPU SpGEMM methods, our approach delivers excellent absolute performance and relative speedups on various benchmarks multiplying matrices with diverse sparsity structures. Furthermore, on heterogeneous processors, our SpGEMM approach achieves higher throughput by using re-allocatable shared virtual memory. The source code of this work is available at https://github.com/bhSPARSE/Benchmark_SpGEMM_using_CSR
We propose to store several integers modulo a small prime into a single machine word. Modular addition is performed by addition and possibly subtraction of a word containing several times the modulo. Modular Multiplication is not directly accessible but modular dot product can be performed by an integer multiplication by the reverse integer. Modular multiplication by a word containing a single residue is a also possible. Therefore matrix multiplication can be performed on such a compressed storage. We here give bounds on the sizes of primes and matrices for which such a compression is possible. We also explicit the details of the required compressed arithmetic routines.
As the ratio between the rate of computation and rate with which data can be retrieved from various layers of memory continues to deteriorate, a question arises: Will the current best algorithms for computing matrix-matrix multiplication on future CPUs continue to be (near) optimal? This paper provides compelling analytical and empirical evidence that the answer is no. The analytical results guide us to a new family of algorithms of which the current state-of-the-art Gotos algorithm is but one member. The empirical results, on architectures that were custom built to reduce the amount of bandwidth to main memory, show that under different circumstances, different and particular members of the family become more superior. Thus, this family will likely start playing a prominent role going forward.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا