Do you want to publish a course? Click here

Cascaded Structure Tensor Framework for Robust Identification of Heavily Occluded Baggage Items from Multi-Vendor X-ray Scans

107   0   0.0 ( 0 )
 Added by Naoufel Werghi Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the last two decades, luggage scanning has globally become one of the prime aviation security concerns. Manual screening of the baggage items is a cumbersome, subjective and inefficient process. Hence, many researchers have developed Xray imagery-based autonomous systems to address these shortcomings. However, to the best of our knowledge, there is no framework, up to now, that can recognize heavily occluded and cluttered baggage items from multi-vendor X-ray scans. This paper presents a cascaded structure tensor framework which can automatically extract and recognize suspicious items irrespective of their position and orientation in the multi-vendor X-ray scans. The proposed framework is unique, as it intelligently extracts each object by iteratively picking contour based transitional information from different orientations and uses only a single feedforward convolutional neural network for the recognition. The proposed framework has been rigorously tested on publicly available GDXray and SIXray datasets containing a total of 1,067,381 X-ray scans where it significantly outperformed the state-of-the-art solutions by achieving the mean average precision score of 0.9343 and 0.9595 for extracting and recognizing suspicious items from GDXray and SIXray scans, respectively. Furthermore, the proposed framework has achieved 15.78% better time



rate research

Read More

Automated systems designed for screening contraband items from the X-ray imagery are still facing difficulties with high clutter, concealment, and extreme occlusion. In this paper, we addressed this challenge using a novel multi-scale contour instance segmentation framework that effectively identifies the cluttered contraband data within the baggage X-ray scans. Unlike standard models that employ region-based or keypoint-based techniques to generate multiple boxes around objects, we propose to derive proposals according to the hierarchy of the regions defined by the contours. The proposed framework is rigorously validated on three public datasets, dubbed GDXray, SIXray, and OPIXray, where it outperforms the state-of-the-art methods by achieving the mean average precision score of 0.9779, 0.9614, and 0.8396, respectively. Furthermore, to the best of our knowledge, this is the first contour instance segmentation framework that leverages multi-scale information to recognize cluttered and concealed contraband data from the colored and grayscale security X-ray imagery.
In real-world video surveillance applications, person re-identification (ReID) suffers from the effects of occlusions and detection errors. Despite recent advances, occlusions continue to corrupt the features extracted by state-of-art CNN backbones, and thereby deteriorate the accuracy of ReID systems. To address this issue, methods in the literature use an additional costly process such as pose estimation, where pose maps provide supervision to exclude occluded regions. In contrast, we introduce a novel Holistic Guidance (HG) method that relies only on person identity labels, and on the distribution of pairwise matching distances of datasets to alleviate the problem of occlusion, without requiring additional supervision. Hence, our proposed student-teacher framework is trained to address the occlusion problem by matching the distributions of between- and within-class distances (DCDs) of occluded samples with that of holistic (non-occluded) samples, thereby using the latter as a soft labeled reference to learn well separated DCDs. This approach is supported by our empirical study where the distribution of between- and within-class distances between images have more overlap in occluded than holistic datasets. In particular, features extracted from both datasets are jointly learned using the student model to produce an attention map that allows separating visible regions from occluded ones. In addition to this, a joint generative-discriminative backbone is trained with a denoising autoencoder, allowing the system to self-recover from occlusions. Extensive experiments on several challenging public datasets indicate that the proposed approach can outperform state-of-the-art methods on both occluded and holistic datasets
Security inspection often deals with a piece of baggage or suitcase where objects are heavily overlapped with each other, resulting in an unsatisfactory performance for prohibited items detection in X-ray images. In the literature, there have been rare studies and datasets touching this important topic. In this work, we contribute the first high-quality object detection dataset for security inspection, named Occluded Prohibited Items X-ray (OPIXray) image benchmark. OPIXray focused on the widely-occurred prohibited item cutter, annotated manually by professional inspectors from the international airport. The test set is further divided into three occlusion levels to better understand the performance of detectors. Furthermore, to deal with the occlusion in X-ray images detection, we propose the De-occlusion Attention Module (DOAM), a plug-and-play module that can be easily inserted into and thus promote most popular detectors. Despite the heavy occlusion in X-ray imaging, shape appearance of objects can be preserved well, and meanwhile different materials visually appear with different colors and textures. Motivated by these observations, our DOAM simultaneously leverages the different appearance information of the prohibited item to generate the attention map, which helps refine feature maps for the general detectors. We comprehensively evaluate our module on the OPIXray dataset, and demonstrate that our module can consistently improve the performance of the state-of-the-art detection methods such as SSD, FCOS, etc, and significantly outperforms several widely-used attention mechanisms. In particular, the advantages of DOAM are more significant in the scenarios with higher levels of occlusion, which demonstrates its potential application in real-world inspections. The OPIXray benchmark and our model are released at https://github.com/OPIXray-author/OPIXray.
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
Person re-identification (reID) plays an important role in computer vision. However, existing methods suffer from performance degradation in occluded scenes. In this work, we propose an occlusion-robust block, Region Feature Completion (RFC), for occluded reID. Different from most previous works that discard the occluded regions, RFC block can recover the semantics of occluded regions in feature space. Firstly, a Spatial RFC (SRFC) module is developed. SRFC exploits the long-range spatial contexts from non-occluded regions to predict the features of occluded regions. The unit-wise prediction task leads to an encoder/decoder architecture, where the region-encoder models the correlation between non-occluded and occluded region, and the region-decoder utilizes the spatial correlation to recover occluded region features. Secondly, we introduce Temporal RFC (TRFC) module which captures the long-term temporal contexts to refine the prediction of SRFC. RFC block is lightweight, end-to-end trainable and can be easily plugged into existing CNNs to form RFCnet. Extensive experiments are conducted on occluded and commonly holistic reID benchmarks. Our method significantly outperforms existing methods on the occlusion datasets, while remains top even superior performance on holistic datasets. The source code is available at https://github.com/blue-blue272/OccludedReID-RFCnet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا