No Arabic abstract
Industrial control systems are critical to the operation of industrial facilities, especially for critical infrastructures, such as refineries, power grids, and transportation systems. Similar to other information systems, a significant threat to industrial control systems is the attack from cyberspace---the offensive maneuvers launched by anonymous in the digital world that target computer-based assets with the goal of compromising a systems functions or probing for information. Owing to the importance of industrial control systems, and the possibly devastating consequences of being attacked, significant endeavors have been attempted to secure industrial control systems from cyberattacks. Among them are intrusion detection systems that serve as the first line of defense by monitoring and reporting potentially malicious activities. Classical machine-learning-based intrusion detection methods usually generate prediction models by learning modest-sized training samples all at once. Such approach is not always applicable to industrial control systems, as industrial control systems must process continuous control commands with limited computational resources in a nonstop way. To satisfy such requirements, we propose using online learning to learn prediction models from the controlling data stream. We introduce several state-of-the-art online learning algorithms categorically, and illustrate their efficacies on two typically used testbeds---power system and gas pipeline. Further, we explore a new cost-sensitive online learning algorithm to solve the class-imbalance problem that is pervasive in industrial intrusion detection systems. Our experimental results indicate that the proposed algorithm can achieve an overall improvement in the detection rate of cyberattacks in industrial control systems.
In this paper, we propose online algorithms for multiclass classification using partial labels. We propose two variants of Perceptron called Avg Perceptron and Max Perceptron to deal with the partial labeled data. We also propose Avg Pegasos and Max Pegasos, which are extensions of Pegasos algorithm. We also provide mistake bounds for Avg Perceptron and regret bound for Avg Pegasos. We show the effectiveness of the proposed approaches by experimenting on various datasets and comparing them with the standard Perceptron and Pegasos.
We provide a new adaptive method for online convex optimization, MetaGrad, that is robust to general convex losses but achieves faster rates for a broad class of special functions, including exp-concave and strongly convex functions, but also various types of stochastic and non-stochastic functions without any curvature. We prove this by drawing a connection to the Bernstein condition, which is known to imply fast rates in offline statistical learning. MetaGrad further adapts automatically to the size of the gradients. Its main feature is that it simultaneously considers multiple learning rates, which are weighted directly proportional to their empirical performance on the data using a new meta-algorithm. We provide thr
We study the problem of controlling linear time-invariant systems with known noisy dynamics and adversarially chosen quadratic losses. We present the first efficient online learning algorithms in this setting that guarantee $O(sqrt{T})$ regret under mild assumptions, where $T$ is the time horizon. Our algorithms rely on a novel SDP relaxation for the steady-state distribution of the system. Crucially, and in contrast to previously proposed relaxations, the feasible solutions of our SDP all correspond to strongly stable policies that mix exponentially fast to a steady state.
Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learning and tackle the challenging problem where the underlying process is stationary and ergodic and thus removing the i.i.d. assumption and allowing observations to depend on each other arbitrarily. We prove the generalization abilities of Lipschitz regularized deep neural networks and show that by using those networks, a convergence to the best possible prediction strategy is guaranteed.
In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalization errors in expectation. A sufficient condition for the almost sure convergence is also given. With high probability, we provide explicit convergence rates of the excess generalization errors for both averaged iterates and the last iterate, which in turn also imply convergence rates with probability one. To our best knowledge, this is the first high-probability convergence rate for the last iterate of online gradient descent algorithms without strong convexity. Without any boundedness assumptions on iterates, our results are derived by a novel use of two measures of the algorithms one-step progress, respectively by generalization errors and by distances in RKHSs, where the variances of the involved martingales are cancelled out by the descent property of the algorithm.