We present the computation of Higgs boson production in association with a jet at the LHC including QCD corrections up to NNLO. The calculation includes the subsequent decay of the Higgs boson into four leptons, allowing for the full reconstruction of the final-state kinematics. In anticipation of improved LHC measurements based on the full Run II dataset, we present a study for single- and double-differential cross sections within the fiducial volume as defined in prior ATLAS analyses. Higher-order corrections are found to have a sizeable impact on both normalisation and shape of differential cross sections.
The four-lepton decay mode of the Higgs boson allows for a clean kinematic reconstruction, thereby enabling precision studies of the Higgs boson properties and of its production dynamics. We compute the NNLO QCD corrections to fiducial cross sections relevant to this decay mode in the gluon-fusion production of a Higgs boson in association with a hadronic jet, and study the impact of the QCD corrections on the fiducial acceptance factors in inclusive Higgs and Higgs-plus-jet production. We investigate in detail the different definitions used in the ATLAS and CMS measurements to define the fiducial cross sections. Differences in the lepton isolation prescription are found to have a sizeable impact on the higher order corrections to the fiducial acceptance factors.
The implementation of the full next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production at hadron colliders such as the LHC within the Matchbox NLO framework of the Herwig++ event generator is discussed. We present numerical results for integrated cross sections and kinematic distributions.
We report on the calculation of virtual processes contributing to the production of a Higgs boson and two jets in hadron-hadron collisions. The coupling of the Higgs boson to gluons, via a virtual loop of top quarks, is treated using an effective theory, valid in the large top quark mass limit. The calculation is performed by evaluating one-loop diagrams in the effective theory. The primary method of calculation is a numerical evaluation of the virtual amplitudes as a Laurent series in $D-4$, where $D$ is the dimensionality of space-time. For the cases $H to qbar{q}qbar{q}$ and $H to qbar{q}qbar{q}$ we confirm the numerical results by an explicit analytic calculation.
We present the next-to-leading order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of Sector Decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high $p_{t,mathrm{H}}$ region, where the top-quark loop is resolved. We find that the next-to-leading order QCD corrections are large but that the ratio of the next-to-leading order to leading order result is similar to that obtained by computing in the limit of large top-quark mass.
The production of jets in charged current deep inelastic scattering (CC DIS) constitutes a class of observables that can be used to simultaneously test perturbative predictions for the strong and the electroweak sectors of the Standard Model. We compute both single jet and di-jet production in CC DIS for the first time at next-to-next-to-leading order (NNLO) in the strong coupling. Our computation is fully differential in the jet and lepton kinematics, and we observe a substantial reduction of scale variation uncertainties in the NNLO predictions compared to next-to-leading order (NLO). Our calculation will prove essential for full exploitation of data at a possible future LHeC collider.